期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Common Spatial Pattern Ensemble Classifier and Its Application in Brain-Computer Interface 被引量:5
1
作者 Xu Lei Ping Yang Peng Xu Tie-Jun Liu De-Zhong Yao 《Journal of Electronic Science and Technology of China》 2009年第1期17-21,共5页
Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on... Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on pooling the covariance matrices of trials. In this paper, we propose a simple yet effective approach, named common spatial pattern ensemble (CSPE) classifier, to improve CSP performance. Through division of recording channels, multiple CSP filters are constructed. By projection, log-operation, and subtraction on the original signal, an ensemble classifier, majority voting, is achieved and outlier contaminations are alleviated. Experiment results demonstrate that the proposed CSPE classifier is robust to various artifacts and can achieve an average accuracy of 83.02%. 展开更多
关键词 Brain-computer interface channel selection classifier ensemble common spatial pattern.
在线阅读 下载PDF
Key-Attributes-Based Ensemble Classifier for Customer Churn Prediction
2
作者 Yu Qian Liang-Qiang Li +1 位作者 Jian-Rong Ran Pei-Ji Shao 《Journal of Electronic Science and Technology》 CAS CSCD 2018年第1期37-44,共8页
Recently, it has been seen that the ensemble classifier is an effective way to enhance the prediction performance. However, it usually suffers from the problem of how to construct an appropriate classifier based on a ... Recently, it has been seen that the ensemble classifier is an effective way to enhance the prediction performance. However, it usually suffers from the problem of how to construct an appropriate classifier based on a set of complex data, for example,the data with many dimensions or hierarchical attributes. This study proposes a method to constructe an ensemble classifier based on the key attributes. In addition to its high-performance on precision shared by common ensemble classifiers, the calculation results are highly intelligible and thus easy for understanding.Furthermore, the experimental results based on the real data collected from China Mobile show that the keyattributes-based ensemble classifier has the good performance on both of the classifier construction and the customer churn prediction. 展开更多
关键词 Customer churn data mining ensemble classifier key attribute
在线阅读 下载PDF
Evolutionary Algorithm with Ensemble Classifier Surrogate Model for Expensive Multiobjective Optimization
3
作者 LAN Tian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第S01期76-87,共12页
For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).... For many real-world multiobjective optimization problems,the evaluations of the objective functions are computationally expensive.Such problems are usually called expensive multiobjective optimization problems(EMOPs).One type of feasible approaches for EMOPs is to introduce the computationally efficient surrogates for reducing the number of function evaluations.Inspired from ensemble learning,this paper proposes a multiobjective evolutionary algorithm with an ensemble classifier(MOEA-EC)for EMOPs.More specifically,multiple decision tree models are used as an ensemble classifier for the pre-selection,which is be more helpful for further reducing the function evaluations of the solutions than using single inaccurate model.The extensive experimental studies have been conducted to verify the efficiency of MOEA-EC by comparing it with several advanced multiobjective expensive optimization algorithms.The experimental results show that MOEA-EC outperforms the compared algorithms. 展开更多
关键词 multiobjective evolutionary algorithm expensive multiobjective optimization ensemble classifier surrogate model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部