An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by...An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations.展开更多
This paper summarizes the research results dealing with washer and nut taxonomy and knowledge base design, making the use of fuzzy methodology. In particular, the theory of fuzzy membership functions, similarity matri...This paper summarizes the research results dealing with washer and nut taxonomy and knowledge base design, making the use of fuzzy methodology. In particular, the theory of fuzzy membership functions, similarity matrices, and the operation of fuzzy inference play important roles.A realistic set of 25 washers and nuts are employed to conduct extensive experiments and simulations.The investigation includes a complete demonstration of engineering design. The results obtained from this feasibility study are very encouraging indeed because they represent the lower bound with respect to performance, namely correctrecognition rate, of what fuzzy methodology can do. This lower bound shows high recognition rate even with noisy input patterns, robustness in terms of noise tolerance, and simplicity in hardware implementation. Possible future works are suggested in the conclusion.展开更多
文摘An automatic method for classifying frequency shift keying(FSK),minimum shift keying(MSK),phase shift keying(PSK),quadrature amplitude modulation(QAM),and orthogonal frequency division multiplexing(OFDM)is proposed by simultaneously using normality test,spectral analysis,and geometrical characteristics of in-phase-quadrature(I-Q)constellation diagram.Since the extracted features are unique for each modulation,they can be considered as a fingerprint of each modulation.We show that the proposed algorithm outperforms the previously published methods in terms of signal-to-noise ratio(SNR)and success rate.For example,the success rate of the proposed method for 64-QAM modulation at SNR=11 dB is 99%.Another advantage of the proposed method is its wide SNR range;such that the probability of classification for 16-QAM at SNR=3 dB is almost 1.The proposed method also provides a database for geometrical features of I-Q constellation diagram.By comparing and correlating the data of the provided database with the estimated I-Q diagram of the received signal,the processing gain of 4 dB is obtained.Whatever can be mentioned about the preference of the proposed algorithm are low complexity,low SNR,wide range of modulation set,and enhanced recognition at higher-order modulations.
文摘This paper summarizes the research results dealing with washer and nut taxonomy and knowledge base design, making the use of fuzzy methodology. In particular, the theory of fuzzy membership functions, similarity matrices, and the operation of fuzzy inference play important roles.A realistic set of 25 washers and nuts are employed to conduct extensive experiments and simulations.The investigation includes a complete demonstration of engineering design. The results obtained from this feasibility study are very encouraging indeed because they represent the lower bound with respect to performance, namely correctrecognition rate, of what fuzzy methodology can do. This lower bound shows high recognition rate even with noisy input patterns, robustness in terms of noise tolerance, and simplicity in hardware implementation. Possible future works are suggested in the conclusion.