Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5...Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.展开更多
s: Ultrafine A2La2Ti3O10 (A=K, Na) powders with laminar structure were successfully synthesized by citric acid sol-gel method using ANO3(A=K, Na)?La(NO3)3?Ti(OBu)4 and citric acid as starting precursors. The crystalli...s: Ultrafine A2La2Ti3O10 (A=K, Na) powders with laminar structure were successfully synthesized by citric acid sol-gel method using ANO3(A=K, Na)?La(NO3)3?Ti(OBu)4 and citric acid as starting precursors. The crystalline phase of A2La2Ti3O10 can be obtained by thermal decomposition of citrate complex precursors at a relatively low temperature of 800 ℃ (600 ℃ for A=Na), about 300 ℃(500 ℃ for A=Na) lower than that of conventional solid state reaction process. The properties of the citrate precursors and the calcined powders were characterized by Infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal-gravimetric-differential thermal analysis (TG-DTA), inductively coupled plasma (ICP) and Brunauer-Emmett-Teller (BET) techniques. Results show that the average size of A2La2Ti3O10 powders obtained by citric acid sol-gel route was reduced to 200 nm×250 nm and the specific surface area was up to 19 m2·g-1. At the same time, the product was with more regular morphological characteristics. The synthesis process and the formation of A2La2Ti3O10 were also discussed. The obtained A2La2Ti3O10 was found to be transformed from A2La2Ti3O9.5 during the formation process.展开更多
LiCoO2 precursors of the cathode material for lithium ion batteries were prepared from lithium hydroxide, basic cobalt carbonate and citric acid by a sol gel method. The LiCoO2 samples were obtained by sintering the g...LiCoO2 precursors of the cathode material for lithium ion batteries were prepared from lithium hydroxide, basic cobalt carbonate and citric acid by a sol gel method. The LiCoO2 samples were obtained by sintering the gel precursors at different temperatures and for different times. The thermal decomposition behavior of the gel precursors was examined by means of thermo gravimetric analysis and differential thermal analysis using a PCT IA thermal analyzer system. Their structures and morphologies were characterized by powder XRD and SEM techniques. It was found that using citric acid realized that the formation of LiCoO2 crystal can be clearly differentiated to the nucleation and growth processes of the crystals; furthermore, the crystal size can be controlled. Electrochemical tests using the LAND BT1 10 test system showed the electrochemical performance of the material is affected by its integrity and stability.展开更多
基金Projects(13A047,10B054)supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProjects(2011GK2002,2011FJ3160)supported by the Planned Science and Technology Project of Hunan Province,China
文摘Li2Fe0.5Mn0.5SiO4 material was synthesized by a citric acid-assisted sol-gel method. The influence of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+) on the electrochemical properties of Li2Fe0.5Mn0.5SiO4 was studied. The final sample was identified as Li2Fe0.5Mn0.5SiO4 with a Pmn21 monoclinic structure by X-ray diffraction analysis. The crystal phases components and crystal phase structure of the Li2Fe0.5Mn0.4SiO4 material were improved as the increase of the stoichiometric ratio value of n(citric acid) to n(Fe2+-Mn2+). Field-emission scanning electron microscopy verified that the Li2Fe0.5Mn0.5SiO4 particles are agglomerates of Li2Fe0.5Mn0.5SiO4 primary particles with a geometric mean diameter of 220 nm. The Li2Fe0.5Mn0.5SiO4 sample was used as an electrode material for rechargeable lithium ion batteries, and the electrochemical measurements were carried out at room temperature. The Li2Fe0.5Mn0.5SiO4 electrode delivered a first discharge capacity of 230.1 mAh/g at the current density of 10 mA/g in first cycle and about 162 mAh/g after 20 cycles at the current density of 20 mA/g.
文摘s: Ultrafine A2La2Ti3O10 (A=K, Na) powders with laminar structure were successfully synthesized by citric acid sol-gel method using ANO3(A=K, Na)?La(NO3)3?Ti(OBu)4 and citric acid as starting precursors. The crystalline phase of A2La2Ti3O10 can be obtained by thermal decomposition of citrate complex precursors at a relatively low temperature of 800 ℃ (600 ℃ for A=Na), about 300 ℃(500 ℃ for A=Na) lower than that of conventional solid state reaction process. The properties of the citrate precursors and the calcined powders were characterized by Infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal-gravimetric-differential thermal analysis (TG-DTA), inductively coupled plasma (ICP) and Brunauer-Emmett-Teller (BET) techniques. Results show that the average size of A2La2Ti3O10 powders obtained by citric acid sol-gel route was reduced to 200 nm×250 nm and the specific surface area was up to 19 m2·g-1. At the same time, the product was with more regular morphological characteristics. The synthesis process and the formation of A2La2Ti3O10 were also discussed. The obtained A2La2Ti3O10 was found to be transformed from A2La2Ti3O9.5 during the formation process.
文摘LiCoO2 precursors of the cathode material for lithium ion batteries were prepared from lithium hydroxide, basic cobalt carbonate and citric acid by a sol gel method. The LiCoO2 samples were obtained by sintering the gel precursors at different temperatures and for different times. The thermal decomposition behavior of the gel precursors was examined by means of thermo gravimetric analysis and differential thermal analysis using a PCT IA thermal analyzer system. Their structures and morphologies were characterized by powder XRD and SEM techniques. It was found that using citric acid realized that the formation of LiCoO2 crystal can be clearly differentiated to the nucleation and growth processes of the crystals; furthermore, the crystal size can be controlled. Electrochemical tests using the LAND BT1 10 test system showed the electrochemical performance of the material is affected by its integrity and stability.