因高度向分辨能力缺失,地基干涉雷达应用于建筑成像时会发生严重的高度向叠掩现象。层析合成孔径雷达(Tomographic Synthetic Aperture Radar,TomoSAR)技术具备高度向分辨能力,能够实现建筑三维成像。地基层析圆弧扫描合成孔径雷达(Grou...因高度向分辨能力缺失,地基干涉雷达应用于建筑成像时会发生严重的高度向叠掩现象。层析合成孔径雷达(Tomographic Synthetic Aperture Radar,TomoSAR)技术具备高度向分辨能力,能够实现建筑三维成像。地基层析圆弧扫描合成孔径雷达(Ground-based Tomographic Arc-scanning Synthetic Aperture Radar,GB-TomoArcSAR)通过双轴转台控制天线在不同俯仰角度的水平面内进行圆周扫描来获取高度向合成孔径,实现三维层析成像。本文提出了GB-TomoArcSAR的三维点云生成方法,首先构建了适用于高度向弧形采样条件的层析成像几何模型。其次利用基于巴特沃斯滤波器的奇异值分解(Singular Value Decomposition,SVD)方法进行谱估计,找出层析谱中的峰值及其对应的峰值位置,构成层析向目标候选集。随后利用自对消顺序广义似然比(Sequential Generalized Likelihood Ratio Test with Cancellation,SGLRTC)检测器估计散射体的数目与位置,通过设置检测门限将真实目标的峰值及对应的峰值位置从候选集中筛选出来。最后采用基于空间几何分布的点云优化方法剔除误差点,生成点云图像。文章通过点目标和面目标的仿真实验,验证了所提方法适用于GB-TomoArcSAR,能够有效解决高度向多散射体目标的叠掩问题;进一步开展了实测数据验证,基于所提方法获取了北京市一处建筑基坑的层析点云,其与实际场景几何特征一致。展开更多
An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage traje...An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage trajectory is approximated by Taylor series expansion to the quadratic terms,which limits the valid synthetic aperture length and the angular reconstruction range severely.Based on the model of the CSAR echo signal,the proposed algorithm directly transforms the signal to the two-dimensional(2D) wavenumber domain,not using approximation processing to the range trajectory.Based on form of the signal spectrum in the wavenumber domain,the formula for the wavenumber domain interpolation of the w-k algorithm is deduced,and the wavenumber spectrum of the reference point used for bulk compression is obtained from numerical method.The improved CSAR ω-k imaging algorithm increases the valid synthetic aperture length and the angular area greatly and hence improves the angular resolution of the cylindrical imaging.Additionally,the proposed algorithm can be repeated on different cylindrical surfaces to achieve three dimensional(3D) image reconstruction.The 3D spatial resolution of the CSAR system is discussed,and the simulation results validate the correctness of the analysis and the feasibility of the algorithm.展开更多
文摘因高度向分辨能力缺失,地基干涉雷达应用于建筑成像时会发生严重的高度向叠掩现象。层析合成孔径雷达(Tomographic Synthetic Aperture Radar,TomoSAR)技术具备高度向分辨能力,能够实现建筑三维成像。地基层析圆弧扫描合成孔径雷达(Ground-based Tomographic Arc-scanning Synthetic Aperture Radar,GB-TomoArcSAR)通过双轴转台控制天线在不同俯仰角度的水平面内进行圆周扫描来获取高度向合成孔径,实现三维层析成像。本文提出了GB-TomoArcSAR的三维点云生成方法,首先构建了适用于高度向弧形采样条件的层析成像几何模型。其次利用基于巴特沃斯滤波器的奇异值分解(Singular Value Decomposition,SVD)方法进行谱估计,找出层析谱中的峰值及其对应的峰值位置,构成层析向目标候选集。随后利用自对消顺序广义似然比(Sequential Generalized Likelihood Ratio Test with Cancellation,SGLRTC)检测器估计散射体的数目与位置,通过设置检测门限将真实目标的峰值及对应的峰值位置从候选集中筛选出来。最后采用基于空间几何分布的点云优化方法剔除误差点,生成点云图像。文章通过点目标和面目标的仿真实验,验证了所提方法适用于GB-TomoArcSAR,能够有效解决高度向多散射体目标的叠掩问题;进一步开展了实测数据验证,基于所提方法获取了北京市一处建筑基坑的层析点云,其与实际场景几何特征一致。
文摘An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage trajectory is approximated by Taylor series expansion to the quadratic terms,which limits the valid synthetic aperture length and the angular reconstruction range severely.Based on the model of the CSAR echo signal,the proposed algorithm directly transforms the signal to the two-dimensional(2D) wavenumber domain,not using approximation processing to the range trajectory.Based on form of the signal spectrum in the wavenumber domain,the formula for the wavenumber domain interpolation of the w-k algorithm is deduced,and the wavenumber spectrum of the reference point used for bulk compression is obtained from numerical method.The improved CSAR ω-k imaging algorithm increases the valid synthetic aperture length and the angular area greatly and hence improves the angular resolution of the cylindrical imaging.Additionally,the proposed algorithm can be repeated on different cylindrical surfaces to achieve three dimensional(3D) image reconstruction.The 3D spatial resolution of the CSAR system is discussed,and the simulation results validate the correctness of the analysis and the feasibility of the algorithm.