期刊文献+
共找到220,106篇文章
< 1 2 250 >
每页显示 20 50 100
Study on the formation characteristics of underwater hemispherical shaped charge jet and its penetration performance into concrete 被引量:1
1
作者 Chao Cao Jinxiang Wang +5 位作者 Lingquan Kong Kui Tang Yujie Xiao Yangchen Gu Ming Yang Jian Wang 《Defence Technology(防务技术)》 2025年第5期180-196,共17页
Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of sh... Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water. 展开更多
关键词 Shaped charge jet Underwater penetration Formation characteristic Concrete failure
在线阅读 下载PDF
Hydraulic fracturing-based analytical method for determining seepage characteristics at tunnel-gasketed joints 被引量:1
2
作者 GONG Chen-jie CHENG Ming-jin +2 位作者 FAN Xuan PENG Yi-cheng DING Wen-qi 《Journal of Central South University》 2025年第4期1520-1534,共15页
Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fract... Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels. 展开更多
关键词 shield tunnels segment joints seepage characteristics hydraulic fracture analytical solution
在线阅读 下载PDF
Experimental and numerical investigation of cavity characteristics in behind-armor liquid-filled containers under shaped charge jet impact 被引量:1
3
作者 Shixin Ma Xiangdong Li Lanwei Zhou 《Defence Technology(防务技术)》 2025年第5期242-259,共18页
The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure ... The cavity characteristics in liquid-filled containers caused by high-velocity impacts represent an important area of research in hydrodynamic ram phenomena.The dynamic expansion of the cavity induces liquid pressure variations,potentially causing catastrophic damage to the container.Current studies mainly focus on non-deforming projectiles,such as fragments,with limited exploration of shaped charge jets.In this paper,a uniquely experimental system was designed to record cavity profiles in behind-armor liquid-filled containers subjected to shaped charge jet impacts.The impact process was then numerically reproduced using the explicit simulation program ANSYS LS-DYNA with the Structured Arbitrary Lagrangian-Eulerian(S-ALE)solver.The formation mechanism,along with the dimensional and shape evolution of the cavity was investigated.Additionally,the influence of the impact kinetic energy of the jet on the cavity characteristics was analyzed.The findings reveal that the cavity profile exhibits a conical shape,primarily driven by direct jet impact and inertial effects.The expansion rates of both cavity length and maximum radius increase with jet impact kinetic energy.When the impact kinetic energy is reduced to 28.2 kJ or below,the length-to-diameter ratio of the cavity ultimately stabilizes at approximately 7. 展开更多
关键词 Cavity characteristics Shaped charge jet Behind-armor liquid-filled container Impact kinetic energy Hydrodynamic ram
在线阅读 下载PDF
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
4
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
Flow field distribution and overpressure characteristics inside the crew compartment of a truck-mounted howitzer under the effect of muzzle blast 被引量:1
5
作者 Shengcheng Wei Linfang Qian +2 位作者 Yadong Xu Qiang Yin Xinyu Xiong 《Defence Technology(防务技术)》 2025年第2期190-205,共16页
The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personn... The muzzle blast overpressure induces disturbances in the flow field inside the crew compartment(FFICC)of a truck-mounted howitzer during the artillery firing.This overpressure is the primary factor preventing personnel from firing artillery within the cab.To investigate the overpressure characteristics of the FFICC,a foreign trade equipment model was used as the research object,and a numerical model was established to analyze the propagation of muzzle blast from the muzzle to the interior of the crew compartment under extreme firing condition.For comparative verification,the muzzle blast experiment included overpressure data from both the flow field outside the crew compartment(FFOCC)and the FFICC,as well as the acceleration data of the crew compartment structure(Str-CC).The research findings demonstrate that the overpressure-time curves of the FFICC exhibit multi-peak characteristics,while the pressure wave shows no significant discontinuity.The enclosed nature of the cab hinders the dissipation of pressure wave energy within the FFICC,leading to sustained high-amplitude overpressure.The frameskin structure helps attenuate the impact of muzzle blast on the FFICC.Conversely,local high overpressure caused by the convex or concave features of the cab's exterior significantly amplifies the overpressure amplitude within the FFICC. 展开更多
关键词 Truck-mounted howitzer Muzzle blast Flow field inside the crew compartment(FFICC) Overpressure characteristics Flow-structure interaction
在线阅读 下载PDF
MPMS-SGH:Multi-parameter Multi-step Prediction Model for Solar Greenhouse
6
作者 JI Ronghua WANG Wenxuan +2 位作者 AN Dong QI Shaotian LIU Jincun 《农业机械学报》 北大核心 2025年第7期265-278,共14页
Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parame... Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse. 展开更多
关键词 solar greenhouse environmental parameter time series multi-step prediction
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
7
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
Shear fracture behavior and fracture fractal characteristics of granite under adverse effect of cyclic heating
8
作者 JIANG Tian-qi CHEN Bing +5 位作者 ZHANG Qing-song SHEN Bao-tang BAI Ji-wen LIU Ren-tai CHEN Meng-jun SASAOKA Takashi 《Journal of Central South University》 2025年第9期3405-3426,共22页
Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors i... Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors in rocks under the influence of cyclic heating is imperative for optimizing geothermal energy extraction. This study encompasses several critical aspects under cyclic heating conditions, including the assessment of stress distribution states, the characterization of two-dimensional fracture paths, the quantitative analysis of three-dimensional damage characteristics on fracture surfaces, and the determination of the fractal dimension of debris generated after the failure of granite. The test results demonstrate that cyclic heating has a pronounced adverse effect on the physical and mechanical properties of granite. Consequently, stress tends to develop and propagate in a direction perpendicular to the two-dimensional fracture path. This leads to an increase in the extent of tensile damage on the fracture surface and accelerates the overall rock failure process. This increases the number of small-sized debris, raises the fractal dimension, and enhances the rock’s rupture degree. In practical enhanced geothermal energy extraction, the real-time monitoring of fracture propagation within the reservoir rock mass is achieved through the analysis of rock debris generated during the staged fracturing process. 展开更多
关键词 progressive thermal damage stress distribution characteristics two-dimensional fracture path three-dimensional fracture surface failure characteristics fractal dimension
在线阅读 下载PDF
Environmental DNA assessment of fish diversity, distribution and niche characteristics in Zhutuo spawning ground in the upper reaches of the Yangtze River
9
作者 LU Jia WANG Li +3 位作者 LI Ruijiao YANG Jin ZHANG Peng YANG Shengfa 《水利水电技术(中英文)》 北大核心 2025年第S1期454-467,共14页
[Objective]Implementation of the Ten-Year Fishing Ban policy may alter fish diversity and niche characteristics of dominant species in spawning grounds within the National Nature Reserve for Rare and Endemic Fish in t... [Objective]Implementation of the Ten-Year Fishing Ban policy may alter fish diversity and niche characteristics of dominant species in spawning grounds within the National Nature Reserve for Rare and Endemic Fish in the Upper Yangtze River.This study initiated continuous monitoring of natural spawning habitats from February 2022 to assess these ecological changes.[Methods]Environmental DNA(eDNA)metabarcoding was employed to analyze fish species composition,biodiversity patterns,and niche parameters of dominant species.Water sampling followed the CEN/TS 19461 standard across five monitoring transects(ZT1-ZT5).[Results]The eDNA analysis detected 45 species of fish belonging to 38 genera,13 families,and 3 orders were detected through environmental DNA(eDNA)in this survey,including 10 species endemic to the upper reaches of the Yangtze River,such as Procypris rabaudi and Myxocyprinus asiaticus.The fish community was mainly composed of bottom-dwelling,settling ovum-producing,omnivorous fish.The variation ranges of the Chao1 index,ACE index,Shannon index,and Simpson index are 736~996,719~965,1.58~3.23,and 0.83~0.99,respectively,indicating that fish species in spawning sites are abundant and community distribution uniformity is high.All indexes are highest at ZT1 monitoring points.Cluster analysis showed that,at a certain similarity level,fish community types in spawning sites could be basically divided into two groups:ZT1,ZT3,and ZT5 clustered together,and ZT2 and ZT4 clustered together,indicating similar fish community habitats.There are 9 dominant fish species in typical deep pool habitats in the reserve,with niche widths(Bi)ranging from 1.13 to 3.87.The dominant fish species are broad and medium niche fish,such as Cyprinus carpio and Hemiculter tchangi,with the niche overlap index(Oik)of some dominant fish species reaching more than 0.95.This indicates fierce competition for resources among the fish in this spawning ground.[Conclusion]The Zhutuo spawning ground demonstrates high species richness with homogeneous community structure and intense resource competition.This study establishes an eDNA-based monitoring framework that enhances conventional survey method,providing critical baseline data for adaptive management under the fishing moratorium regime. 展开更多
关键词 eDNA metabarcoding fishes endemic to the upper reaches of the Yangtze River spawning ground fish diversity niche characteristics
在线阅读 下载PDF
Compression-shear micro-and macro-failure characteristics of red sandstone
10
作者 LI Xue-feng DU Kun +2 位作者 WANG Li-chang ZHOU Jian YANG Tao 《Journal of Central South University》 2025年第2期437-448,共12页
The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied... The mechanical parameters and failure characteristics of sandstone under compressive-shear stress states provide crucial theoretical references for underground engineering construction.In this study,a series of varied angle shear tests(VASTs)were designed using acoustic emission(AE)detection and digital image correlation technologies to evaluate the mechanical behaviors of typical red sandstone.AE signal parameters revealed differences in the number and intensity of microcracks within the sandstone,with a test angle(α)of 50°identified as a significant turning point for its failure properties.Whenα³50°,microcrack activity intensified,and the proportion of tensile cracks increased.Asαincreased,the number of fragments generated after failure decreased,fragment sizes became smaller,and the crack network simplified.Cracks extended from the two cut slits at the ends of the rock,gradually penetrating along the centerline towards the central location,as observed from the evolution of the strain concentration field.Both cohesion(c)and internal friction angle(ϕ)measured in VAST were lower than those measured under conventional triaxial compression. 展开更多
关键词 compressive-shear stress acoustic emission failure properties shear parameter
在线阅读 下载PDF
Numerical study on flow characteristics of large copper smelting bottom-blown furnace under strong and weak coupling oxygen supply
11
作者 JIANG Bao-cheng GUO Xue-yi +1 位作者 WANG Song-song WANG Qin-meng 《Journal of Central South University》 2025年第2期363-375,共13页
The melt stirring in a large copper smelting oxygen bottom-blown furnace is caused by the large amount of gas movement blown in by two rows of oxygen lances.At present,the two rows of oxygen lances provide oxygen of e... The melt stirring in a large copper smelting oxygen bottom-blown furnace is caused by the large amount of gas movement blown in by two rows of oxygen lances.At present,the two rows of oxygen lances provide oxygen of equal strength,and the stirring in the central area of the melt is insufficient,which restricts the efficient progress of the smelting reaction.This study proposes a strong-weak coupling oxygen supply method and establishes an equivalent model based on a large bottom-blown furnace(LBBF)of an enterprise to simulate the bubble characteristics and flow characteristics of the molten pool.The results show that adjusting the flow ratio between the two rows of oxygen lances can create a“strong”and a“weak”coexisting source of disturbance in an LBBF.It is worth noting that when the flow rate ratio of the two rows of oxygen lances is 1.6,the peak velocity generated by the“strong”distur bance source in the molten pool increases by 18.92%,and the disturbance range increases.This method effectively strengthens the stirring in the central area of the molten pool,improves smelting efficiency,and does not produce harmful melt splashes.It provides important guidance for optimizing production practice. 展开更多
关键词 large bottom-blown furnace oxygen supply flow characteristics initial bubbles
在线阅读 下载PDF
Hydration mechanism and microstructure characteristics of modified magnesium slag alkali-activated coal-fired slag based cementitious materials
12
作者 SUN Wei-ji LIU Lang +4 位作者 ZHAO Yuan-yuan FANG Zhi-yu LYU Yong-zhe XIE Geng SHAO Cheng-cheng 《Journal of Central South University》 2025年第6期2148-2169,共22页
As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value... As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value utilization pathways for coal-fired slag should be developed.In this study,modified magnesium slag(MMS),produced by a magnesium smelter,was selected as the alkali activator.The activated silica-aluminum solid wastes,namely coal-fired slag(CFS)and mineral powder(MP),were employed as pozzolanic materials in the preparation of alkali-activated cementitious materials.The alkali-activated cementitious materials prepared with 50 wt%MMS,40 wt%CFS and 10 wt%MP exhibited favorable mechanical properties,with a compressive strength of 32.804 MPa in the paste sample cured for 28 d.Then,the activated silica-aluminum solid waste consisting of CFS-MP generated a significant amount of C-S(A)-H gels,AFt,and other products,which were observed to occupy the pore structure of the specimen.In addition,the secondary hydration reaction of CFS-MP occurs in high alkalinity environments,resulting in the formation of a mutually stimulated and promoted reaction system between CFS-MP and MMS,this will subsequently accelerate the hydrolysis reaction of MMS.It is important to emphasize that the amount of MMS in alkali-activated cementitious materials must be strictly regulated to avert the potential issue of incomplete depolymerization-repolymerization of active silica-aluminum solid waste containing CFS-MP.This in turn could have a deleterious impact on the late strength of the cementitious materials.The aim of this work is to improve the joint disposal of MMS,CFS and MP and thereby provide a scientific basis for the development of environmentally friendly and low-carbon modified magnesium slag alkali-activated coal-fired slag based cementitious materials for mine backfilling. 展开更多
关键词 coal-fired slag ALKALI-ACTIVATED hydration characteristics pore structure composite cementitious material
在线阅读 下载PDF
Study on the characteristics of crack initiation in deep dense shale containing circular hole under varying stress conditions
13
作者 XIE Hong-qiang FENG Gan +4 位作者 LIU Huai-zhong HE Qiang XIAO Ming-li PEI Jian-liang TAHERDANGKOO Reza 《Journal of Central South University》 2025年第1期244-261,共18页
The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditi... The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditions.In this work,considering the different combinations of confining pressure and bedding plane inclination angle(α),biaxial mechanical loading experiments were conducted on shale containing circular holes.The research results indicate that the confining pressure and inclination angle of the bedding planes significantly influence the failure patterns of shale containing circular holes.The instability of shale containing circular holes can be classified into five types:tensile failure along the bedding planes,tensile failure through the bedding planes,shear slip along the bedding planes,shear failure through the bedding planes,and block instability failure.Furthermore,the evolution of strain and stress fields around the circular holes was found to be the fundamental cause of variations in the initiation characteristics and locations of shale cracks.The crack initiation criterion for shale containing circular hole was established,providing a new method for evaluating the trajectory of shale hole wall fractures.This study holds significant importance for evaluating the evolution and stability of fracture networks within shale reservoirs. 展开更多
关键词 shale gas deep dense shale crack initiate characteristics failure modes
在线阅读 下载PDF
Experimental study on the TNT equivalence for blast parameters in a confined space
14
作者 Yu-lei Zhang Yan Liu +5 位作者 Pu Song Hao-zhe Liang Di Yang Lu Han Hai-yan Jiang Kai Zhong 《Defence Technology(防务技术)》 2025年第6期238-249,共12页
The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy... The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy and limited application range,the use of TNT equivalence for predicting explosion parameters in a confined space is rare.Compared with explosions in free fields,the process of explosive energy release in a confined space is closely related to various factors such as oxygen balance,combustible components content,and surrounding oxygen content.Studies have shown that in a confined space,negative oxygen balance explosives react with surrounding oxygen during afterburning,resulting in additional energy release and enhanced blast effects.The mechanism of energy release during afterburning is highly complex,making it challenging to determine the TNT equivalence for blast effects in a confined space.Therefore,this remains an active area of research.In this study,internal blast experiments were conducted using TNT and three other explosives under both air and N_2(Nitrogen)conditions to obtain explosion parameters including blast wave overpressure,quasi-static pressure,and temperature.The influences of oxygen balance and external oxygen content on energy release are analyzed.The author proposes principles for determining TNT equivalence for internal explosions while verifying the accuracy of obtained blast parameters through calculations based on TNT equivalence.These findings can serve as references for predicting blast performance. 展开更多
关键词 Explosion in confined space AFTERBURNING Oxygen balance Blast parameters TNT equivalence
在线阅读 下载PDF
Study on the effects of combustion characteristics of pyrotechnic charges on pyrotechnic shocks
15
作者 Jingcheng Wang Shihui Xiong +2 位作者 Huina Mu Xiaogang Li Yuquan Wen 《Defence Technology(防务技术)》 2025年第4期79-98,共20页
This study calculates the combustion characteristics of various gas-generating and micro gas pyrotechnic charges,including aluminium/potassium perchlorate,boron/potassium nitrate,carbon black/potassium nitrate,and sil... This study calculates the combustion characteristics of various gas-generating and micro gas pyrotechnic charges,including aluminium/potassium perchlorate,boron/potassium nitrate,carbon black/potassium nitrate,and silicon-based delay compositions,using thermodynamic software.A multiphase flowthermal-solid coupling model was established,and the combustion process of the pyrotechnic charges within a closed bomb was simulated.The pyrotechnic shock generated by combustion was predicted.The combustion pressures and pyrotechnic shocks were measured.The simulation results demonstrated good agreement with experimental results.Additionally,the mechanism of shock generation by the combustion of pyrotechnic charges in the closed bomb was analyzed.The effects of the combustion characteristics of the pyrotechnic charges on the resulting pyrotechnic shocks were systematically investigated.Notably,the shock response spectrum of the gas-generating pyrotechnic charges is greater than that of the micro gas compositions at most frequencies,particularly in the mid-field pyrotechnic shocks(3-10 kHz).Furthermore,the pyrotechnic shocks increase approximately linearly with the impulse of the gas-generating pyrotechnic charges. 展开更多
关键词 Pyrotechnic charges Pyroshock Closed bomb tests Combustion characteristics Multiphase flow-thermal-solid coupling
在线阅读 下载PDF
Effects of lateral translation on aerodynamic characteristics of superconducting maglev trains
16
作者 ZHANG Lei PAN Shen-gong +5 位作者 LIN Tong-tong YU Qing-song WANG Tian-tian YANG Ming-zhi LIU Dong-run XU Shu 《Journal of Central South University》 2025年第8期3150-3172,共23页
Irregularities in the track and uneven forces acting on the train can cause shifts in the position of the superconducting magnetic levitation train relative to the track during operation.These shifts lead to asymmetri... Irregularities in the track and uneven forces acting on the train can cause shifts in the position of the superconducting magnetic levitation train relative to the track during operation.These shifts lead to asymmetries in the flow field structure on both sides of the narrow suspension gap,resulting in instability and deterioration of the train’s aerodynamic characteristics,significantly impacting its operational safety.In this study,we firstly validate the aerodynamic characteristics of the superconducting magnetic levitation system by developing a numerical simulation method based on wind tunnel test results.We then investigate the influence of lateral translation parameters on the train’s aerodynamic performance under conditions both with and without crosswinds.We aim to clarify the evolution mechanism of the flow field characteristics under the coupling effect between the train and the U-shaped track and to identify the most unfavorable operational parameters contributing to the deterioration of the train’s aerodynamic properties.The findings show that,without crosswinds,a lateral translation of 30 mm causes a synchronous resonance phenomenon at the side and bottom gaps of the train-track coupling,leading to the worst aerodynamic performance.Under crosswind conditions,a lateral translation of 40 mm maximizes peak pressure fluctuations and average turbulent kinetic energy around the train,resulting in the poorest aerodynamic performance.This research provides theoretical support for enhancing the operational stability of superconducting magnetic levitation trains. 展开更多
关键词 superconducting magnetic trains lateral translation aerodynamic characteristics crosswind operation flow coupling
在线阅读 下载PDF
Strength and failure characteristics of hard rock containing a single structural plane under varied loading angles : A true triaxial investigation
17
作者 XU Huai-sheng LI Shao-jun +3 位作者 XU Ding-ping LIU Xu-feng FENG Guang-liang WANG Zhao-feng 《Journal of Central South University》 2025年第5期1903-1921,共19页
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr... The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures. 展开更多
关键词 true triaxial compression hard rock structural plane loading angle STRENGTH failure characteristics
在线阅读 下载PDF
Optimization of mesh characteristics of gear pair considering influence of assembly errors
18
作者 ZHAO Xiao-jian MA Hui +5 位作者 MA Ze-yu LIU Jia-qi CAO Peng WU Yu-ping DING Xiang-fu ZHAO Tian-yu 《Journal of Central South University》 2025年第4期1400-1430,共31页
Gear assembly errors can lead to the increase of vibration and noise of the system,which affect the stability of system.The influence can be compensated by tooth modification.Firstly,an improved three-dimensional load... Gear assembly errors can lead to the increase of vibration and noise of the system,which affect the stability of system.The influence can be compensated by tooth modification.Firstly,an improved three-dimensional loaded tooth contact analysis(3D-LTCA)method which can consider tooth modification and coupling assembly errors is proposed,and mesh stiffness calculated by proposed method is verified by MASTA software.Secondly,based on neural network,the surrogate model(SM)that maps the relationship between modification parameters and mesh mechanical parameters is established,and its accuracy is verified.Finally,SM is introduced to establish an optimization model with the target of minimizing mesh stiffness variations and obtaining more even load distribution on mesh surface.The results show that even considering training time,the efficiency of gear pair optimization by surrogate model is still much higher than that by LTCA method.After optimization,the mesh stiffness fluctuation of gear pair with coupling assembly error is reduced by 34.10%,and difference in average contact stresses between left and right regions of the mesh surface is reduced by 62.84%. 展开更多
关键词 helical gear mesh characteristics gear tooth modification assembly errors neural network multi-objective optimization
在线阅读 下载PDF
Deformation characteristics and interfacial damage of CRTS II slab track joints under operating temperature conditions
19
作者 DONG Bo CHEN Zhi-yuan +3 位作者 ZHU Hao CAI Xiao-pei ZHANG Xing HE Xu 《Journal of Central South University》 2025年第9期3657-3674,共18页
Arching and cracking of joints between slabs have become a problem in China Railway Track System(CRTS)II slab track.The slab track is susceptible to complex temperature variations as a longitudinal continuous structur... Arching and cracking of joints between slabs have become a problem in China Railway Track System(CRTS)II slab track.The slab track is susceptible to complex temperature variations as a longitudinal continuous structure.Based on measured data,a thermal-mechanical coupling model of the track was established.The deformation characteristics and interfacial damage behavior of joints under typical temperature fields were studied.The findings indicate that the annual extreme temperature range of the slab track,fluctuates from−1.4 to 49.8℃.The annual temperature gradient within the vertical depth range of 0 to 0.2 m of the track varies between−16.19℃/m and 30.15℃/m.The vertical deformation of joints is significantly influenced by high temperatures,with a maximum measured deformation of 0.828 mm.The joint seams are primarily affected by low temperatures,which lead to a separation of 0.9 to 1.0 mm.Conversely,interlayer damage of joints is predominantly influenced by elevated temperatures.In summer,the maximum ratio of interface damage area in the joint can reach up to 95%,with the maximum debonding area ratio can be as high as 84%.The research results can provide help for joint damage regularity and deformation control of CRTS II slab track. 展开更多
关键词 CRTS II slab track temperature measurement thermo-mechanical coupling analysis deformation characteristics damage evolution
在线阅读 下载PDF
Bearing characteristics of anchor box beam support system in deep thick roof coal roadway and its application
20
作者 WANG Qi WANG Ming-zi +1 位作者 JIANG Bei XU Chuan-jie 《Journal of Central South University》 2025年第5期1887-1902,共16页
Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam suppor... Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam support system with high strength is developed.The high-strength bearing characteristics and coupling yielding support mechanism of this support system are studied by the mechanical tests of composite members and the combined support system.The test results show that under the coupling effect of support members,the peak stress of the box-shaped support beam in the anchor box beam is reduced by 21.9%,and the average deformation is increased by 135.0%.The ultimate bending bearing capacity of the box-shaped support beam is 3.5 times that of traditional channel beam.The effective compressive stress zone applied by the high prestressed cable is expanded by 26.4%.On this basis,the field support comparison test by the anchor channel beam,the anchor I-shaped beam and the anchor box beam are carried out.Compared with those of the previous two,the surrounding rock convergence of the latter is decreased by 41.2%and 22.2%,respectively.The field test verifies the effectiveness of the anchor box beam support system. 展开更多
关键词 thick roof coal roadway anchor box beam bearing characteristics combined support field application
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部