期刊文献+
共找到1,019篇文章
< 1 2 51 >
每页显示 20 50 100
Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm 被引量:29
1
作者 Mingwei Li Haigui Kang +1 位作者 Pengfei Zhou Weichiang Hong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期324-334,共11页
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ... As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters. 展开更多
关键词 particle swarm optimization(PSO) chaos theory cloud model hybrid optimization
在线阅读 下载PDF
A novel adaptive mutative scale optimization algorithm based on chaos genetic method and its optimization efficiency evaluation 被引量:5
2
作者 王禾军 鄂加强 邓飞其 《Journal of Central South University》 SCIE EI CAS 2012年第9期2554-2560,共7页
By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite co... By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm. 展开更多
关键词 chaos genetic optimization algorithm chaos genetic algorithm optimization efficiency
在线阅读 下载PDF
Power system stabilizer design using hybrid multi-objective particle swarm optimization with chaos 被引量:9
3
作者 Mahdiyeh Eslami Hussain Shareef Azah Mohamed 《Journal of Central South University》 SCIE EI CAS 2011年第5期1579-1588,共10页
A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm... A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO. 展开更多
关键词 passive congregation chaos power system stabilizer penalty function particle swarm optimization
在线阅读 下载PDF
Optimization of HMM Parameters Based on Chaos and Genetic Algorithm for Hand Gesture Recognition 被引量:3
4
作者 Liu Jianghua , Cheng Junshi & Chen Jiapin Information Storage and Research Center, Shanghai Jiaotong University, Shanghai 200030, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第4期79-84,共6页
In order to prevent standard genetic algorithm (SGA) from being premature, chaos is introduced into GA, thus forming chaotic anneal genetic algorithm (CAGA). Chaos ergodicity is used to initialize the population, and ... In order to prevent standard genetic algorithm (SGA) from being premature, chaos is introduced into GA, thus forming chaotic anneal genetic algorithm (CAGA). Chaos ergodicity is used to initialize the population, and chaotic anneal mutation operator is used as the substitute for the mutation operator in SGA. CAGA is a unified framework of the existing chaotic mutation methods. To validate the proposed algorithm, three algorithms, i. e. Baum-Welch, SGA and CAGA, are compared on training hidden Markov model (HMM) to recognize the hand gestures. Experiments on twenty-six alphabetical gestures show the CAGA validity. 展开更多
关键词 chaos theory EXPERIMENTS Genetic algorithms optimization
在线阅读 下载PDF
Chaotic migration-based pseudo parallel genetic algorithm and its application in inventory optimization 被引量:1
5
作者 ChenXiaofang GuiWeihua WangYalin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期411-417,共7页
Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and infor... Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and information exchanging in distributed Parallel Genetic Algorithm by serial program structure to solve optimization problem of low real-time demand. In this algorithm, asynchronic migration of individuals during parallel evolution is guided by a chaotic migration sequence. Information exchanging among sub-populations is ensured to be efficient and sufficient due to that the sequence is ergodic and stochastic. Simulation study of CMPPGA shows its strong global search ability, superiority to standard genetic algorithm and high immunity against premature convergence. According to the practice of raw material supply, an inventory programming model is set up and solved by CMPPGA with satisfactory results returned. 展开更多
关键词 parallel genetic algorithm chaos premature convergence inventory optimization.
在线阅读 下载PDF
Fuzzy controller based on chaos optimal design and its application
6
作者 邹恩 李祥飞 张泰山 《Journal of Central South University of Technology》 EI 2004年第1期98-101,共4页
In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy con... In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy contro-(ller,) and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response. 展开更多
关键词 fuzzy controller chaos algorithm PARAMETER optimal control
在线阅读 下载PDF
基于RS-Chaos-LSSVM的鱼雷航向控制研究 被引量:1
7
作者 宋晓茹 宋保维 罗德柱 《弹箭与制导学报》 CSCD 北大核心 2012年第6期41-44,54,共5页
基于典型的非线性系统的鱼雷航向控制存在不确定性因素,尝试提出基于RS-Chaos-LSSVM的航向控制方案。Chaos在线优化LSSVM模型参数,确保控制的精度。为提高控制的实时快速性,采用RS理论消除冗余信息,用约简后的规则集对Chaos-LSSVM模型... 基于典型的非线性系统的鱼雷航向控制存在不确定性因素,尝试提出基于RS-Chaos-LSSVM的航向控制方案。Chaos在线优化LSSVM模型参数,确保控制的精度。为提高控制的实时快速性,采用RS理论消除冗余信息,用约简后的规则集对Chaos-LSSVM模型进行训练控制,满足较好的快速性;RS-Chaos-LSSVM与RS-LSSVM控制器仿真表明,该方法提高了鱼雷航向控制的实时精确性,且对于海流海浪干扰具有良好的自适应抗干扰能力。 展开更多
关键词 控制 粗糙集 LSSVM 混沌优化
在线阅读 下载PDF
Multidisciplinary design optimization for air-condition production system based on multi-agent technique 被引量:2
8
作者 杨海东 鄂加强 屈挺 《Journal of Central South University》 SCIE EI CAS 2012年第2期527-536,共10页
In order to guarantee the overall production performance of the multiple departments in an air-condition production industry, multidisciplinary design optimization model for production system is established based on t... In order to guarantee the overall production performance of the multiple departments in an air-condition production industry, multidisciplinary design optimization model for production system is established based on the multi-agent technology. Local operation models for departments of plan, marketing, sales, purchasing, as well as production and warehouse are formulated into individual agents, and their respective local objectives are collectively formulated into a multi-objective optimization problem. Considering the coupling effects among the correlated agents, the optimization process is carried out based on self-adaptive chaos immune optimization algorithm with mutative scale. The numerical results indicate that the proposed multi-agent optimization model truly reflects the actual situations of the air-condition production system. The proposed multi-agent based multidisciplinary design optimization method can help companies enhance their income ratio and profit by about 33% and 36%, respectively, and reduce the total cost by about 1.8%. 展开更多
关键词 multi-agent system production operation multidisciplinary optimization self-adaptive chaos optimization immune optimization algorithm
在线阅读 下载PDF
Modified evolutionary algorithm for global optimization 被引量:1
9
作者 郭崇慧 陆玉昌 唐焕文 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第1期1-6,共6页
A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorith... A modification of evolutionary programming or evolution strategies for ndimensional global optimization is proposed. Based on the ergodicity and inherentrandomness of chaos, the main characteristic of the new algorithm which includes two phases is that chaotic behavior is exploited to conduct a rough search of the problem space in order to find the promising individuals in Phase I. Adjustment strategy of steplength and intensive searches in Phase II are employed. The population sequences generated by the algorithm asymptotically converge to global optimal solutions with probability one. The proposed algorithm is applied to several typical test problems. Numerical results illustrate that this algorithm can more efficiently solve complex global optimization problems than evolutionary programming and evolution strategies in most cases. 展开更多
关键词 global optimization evolutionary algorithms chaos search
在线阅读 下载PDF
Intelligent decision support system of operation-optimization in copper smelting converter 被引量:1
10
作者 姚俊峰 梅炽 +2 位作者 彭小奇 周安梁 吴冬华 《Journal of Central South University of Technology》 2002年第2期138-141,共4页
An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging per... An artificial intelligence technique was applied to the optimization of flux adding systems and air blasting systems, the display of on line parameters, forecasting of mass and compositions of slag in the slagging period, optimization of cold material adding systems and air blasting systems, the display of on line parameters, and the forecasting of copper mass in the copper blow period in copper smelting converters. They were integrated to build the Intelligent Decision Support System of the Operation Optimization of Copper Smelting Converter(IDSSOOCSC), which is self learning and self adaptating. Development steps, monoblock structure and basic functions of the IDSSOOCSC were introduced. After it was applied in a copper smelting converter, every production quota was clearly improved after IDSSOOCSC had been run for 4 months. Blister copper productivity is increased by 6%, processing load of cold input is increased by 8% and average converter life span is improved from 213 to 235 furnace times. 展开更多
关键词 intelligent decision support system neural network pattern identification chaos genetic algorithm operation optimization copper smelting converter
在线阅读 下载PDF
融合多策略的改进鹈鹕优化算法 被引量:1
11
作者 李智杰 赵铁柱 +3 位作者 李昌华 介军 石昊琦 杨辉 《控制工程》 北大核心 2025年第7期1184-1197,1206,共15页
针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反... 针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反向学习策略初始化鹈鹕种群,在增加种群多样性的同时为算法寻优能力的提升打下基础;然后,在鹈鹕逼近猎物阶段引入非线性惯性权重因子以提高算法的收敛速度;最后,引入樽海鞘群算法的领导者策略以协调算法的全局搜索能力和局部寻优能力。实验测试了单一改进策略的改进效果,并将IPOA与其他9种优化算法进行了对比。实验结果证明了各改进策略的有效性和IPOA的优越性和鲁棒性。 展开更多
关键词 鹈鹕优化算法 帐篷混沌映射 折射反向学习 非线性惯性权重因子 樽海鞘群算法
在线阅读 下载PDF
融合多策略改进的白鲸优化算法 被引量:3
12
作者 柴岩 常晓萌 任生 《计算机工程与应用》 北大核心 2025年第5期76-93,共18页
为进一步提升白鲸优化算法(BWO)的寻优能力和收敛速度,提出一种融合多策略改进的白鲸优化算法(multi-strategy improved beluga whale optimization,MIBWO)。针对算法初期因随机生成个体的遍历性较差使得算法易陷入局部的劣势,利用PWLC... 为进一步提升白鲸优化算法(BWO)的寻优能力和收敛速度,提出一种融合多策略改进的白鲸优化算法(multi-strategy improved beluga whale optimization,MIBWO)。针对算法初期因随机生成个体的遍历性较差使得算法易陷入局部的劣势,利用PWLCM混沌映射增加种群多样性以及准反向学习生成的反向解增强初始解的质量,为算法寻优性能奠定基础;构造一种动态限制局部扰动搜索机制,引入非线性收敛因子扰动个体增加求解精度与速度,为避免收敛因子在迭代后期过快收敛,利用动态平衡搜索策略以避免陷入局部最优;提出一种差异性种群进化策略对鲸鱼坠落阶段进行最优值位置扰动更新,有效提升收敛精度。理论分析和数值实验证明MIBWO算法具有较强的寻优性能,MIBWO算法在PV辨识问题体现了良好的寻优性能、收敛速度及鲁棒性并具有一定的实际工程应用前景。 展开更多
关键词 白鲸优化算法 PWLCM混沌映射 准反向学习 非线性收敛因子 动态平衡搜索策略 差异性种群进化策略 PV辨识问题
在线阅读 下载PDF
结构非Gauss随机响应分析的混沌响应面法研究
13
作者 李朝阳 许玉佼 杨绿峰 《应用数学和力学》 北大核心 2025年第7期855-866,共12页
传统响应面法应用于非Gauss随机结构时影响计算效率和精度.为此,提出了非Gauss响应量分析的混沌响应面法.首先根据随机变量的概率分布类型构造了混合型广义混沌多项式,据此建立了非Gauss响应量的随机展开式;利用高阶一维广义混沌多项式... 传统响应面法应用于非Gauss随机结构时影响计算效率和精度.为此,提出了非Gauss响应量分析的混沌响应面法.首先根据随机变量的概率分布类型构造了混合型广义混沌多项式,据此建立了非Gauss响应量的随机展开式;利用高阶一维广义混沌多项式的根构造了非Gauss基本随机变量空间的概率配点,并基于系数矩阵行满秩原则遴选非Gauss随机变量空间的最优概率配点;进而利用最小二乘法确定了响应面的待定系数,据此建立了非Gauss响应面的广义混沌表达式.最后,通过对比分析,验证了混沌响应面法能够以较少的配点、较低的展开阶次取得更高的计算精度和效率. 展开更多
关键词 响应面法 广义混沌多项式 非Gauss 最优概率配点
在线阅读 下载PDF
基于MDEPSO算法的无人机三维航迹规划
14
作者 肖鹏 于海霞 +1 位作者 黄龙 张司明 《兵工学报》 北大核心 2025年第7期214-226,共13页
针对经典粒子群算法在无人机三维航迹规划过程中全局搜索能力不足、易陷入局部最优等问题,研究提出一种多维增强粒子群优化算法。算法首先通过引入改善因子,在粒子寻优各个阶段实现动态调整惯性权重,提升种群适应性和克服局部最优能力;... 针对经典粒子群算法在无人机三维航迹规划过程中全局搜索能力不足、易陷入局部最优等问题,研究提出一种多维增强粒子群优化算法。算法首先通过引入改善因子,在粒子寻优各个阶段实现动态调整惯性权重,提升种群适应性和克服局部最优能力;其次依靠动态约束方程实现学习因子增强,促使粒子间信息共享更为高效,改善算法自学习能力;随后有序融合混沌初始化和精英反向学习进化等策略优势,重新规划粒子群进化流程,增强粒子在迭代过程中的均衡性和多样性,提升算法收敛精度。实验中通过测试函数横向对比和复杂三维任务场景纵向应用,多维增强粒子群优化算法在新的多维目标函数指标中相较于经典粒子群算法无人机航迹规划能力获得了提升,在5种比对算法中表现出较好的有效性和竞争力。 展开更多
关键词 无人机 航迹规划 粒子群算法 混沌 精英反向学习策略
在线阅读 下载PDF
矿用自卸车座椅空气弹簧悬架参数辨识与优化
15
作者 刘红华 阳洁颖 刘翠雅 《机械设计与制造》 北大核心 2025年第5期217-222,228,共7页
矿用自卸车的座椅空气弹簧悬架系统缓震效果直接影响乘坐舒适性。这里提出一种运用自适应混沌粒子群优化算法来解决针对矿用自卸车座椅空气弹簧悬挂系统的非线性刚度和阻尼参数的识别处理。借助将混沌引入粒子的运动过程中,与标准粒子... 矿用自卸车的座椅空气弹簧悬架系统缓震效果直接影响乘坐舒适性。这里提出一种运用自适应混沌粒子群优化算法来解决针对矿用自卸车座椅空气弹簧悬挂系统的非线性刚度和阻尼参数的识别处理。借助将混沌引入粒子的运动过程中,与标准粒子群算法相比表现出不同,使粒子群在稳定状态与混沌状态之间交替向着最优点收敛,同时根据粒子运行状态动态调整惯性权重。提高了算法的适应性,明显提升收敛速度并提高了精度,有效避免了局部最优得出,进行整车试验验证了该方法的有效性。结果表明,导致乘坐舒适性下降的主要原因是由于原系统中的刚度和阻尼数值不匹配,因此将垂直方向加速度均方根值设为目标,对空气弹簧悬架的阻尼参数和非线性刚度通过遗传算法来进行优化。在优化后,目标值下降了30.4%,显著提高了乘坐舒适性。 展开更多
关键词 非线性 空气弹簧悬架 自适应混沌粒子群优化算法 辨识 优化
在线阅读 下载PDF
基于多策略改进的金豺优化算法
16
作者 杜晓昕 牛翔慧 +2 位作者 王波 郝田茹 王振飞 《河南师范大学学报(自然科学版)》 北大核心 2025年第4期39-48,I0007,I0008,共12页
金豺优化算法(golden jackal optimization algorithm,GJO)作为一种新型的元启发算法,由于其收敛速度精度不佳,且在探索与开采阶段平衡上存在不足,陷入局部极值等算法弊端均有出现.因此,提出了改进金豺优化算法(IGJO).首先,采用改进型... 金豺优化算法(golden jackal optimization algorithm,GJO)作为一种新型的元启发算法,由于其收敛速度精度不佳,且在探索与开采阶段平衡上存在不足,陷入局部极值等算法弊端均有出现.因此,提出了改进金豺优化算法(IGJO).首先,采用改进型的多值Circle混沌映射,以增进种群多样性及初始解的品质;其次,基于特定的收缩指数函数,将能量方程优化为非线性形式,实现全局与局部搜寻的有效协调;然后,引入基于t-分布的变异策略增强搜索广度,提升全局搜索效能,有效避免局部最优问题;最后,通过调整Levy飞行参数进行细致优化,确立了一个优化值,从而显著提升了算法的收敛速度和精确度.通过9项测试函数的实验验证表明,改进后的IGJO算法在多个方面超越了若干现有的经典或新兴算法. 展开更多
关键词 群智能优化算法 金豺优化算法 多值Circle混沌映射 任意收缩指数函数 自适应t分布突变
在线阅读 下载PDF
基于混沌博弈理论的多源微波加热温度均匀性优化
17
作者 杨彪 韩泽民 +3 位作者 段绍米 黄宏彬 吴照刚 彭飞云 《材料导报》 北大核心 2025年第3期50-57,共8页
本工作研究了多源微波加热系统中材料内部整体温度均匀性的优化问题,也就是在谐振腔体存在驻波的情况下,实现温度场梯度最小的优化目标。首先,从微波频率的动态变化出发,采用热点交替的移频方法,逆转材料温域分布,实现材料间冷热点的中... 本工作研究了多源微波加热系统中材料内部整体温度均匀性的优化问题,也就是在谐振腔体存在驻波的情况下,实现温度场梯度最小的优化目标。首先,从微波频率的动态变化出发,采用热点交替的移频方法,逆转材料温域分布,实现材料间冷热点的中和,达到均匀加热的目的。然后,基于不同微波源之间的耦合程度差异,引入混沌博弈优化算法重构不同频率下各个微波源的馈入功率数值,在确保温度均匀性不变的情况下,提升材料的整体温度。最后,通过多源微波与SiC材料相互作用的仿真实例来分析加热过程,并开展对均匀性指标的有效计算。数值计算结果表明,与固定频率加热和扫频加热相比,所提出的方法均匀性分别提升了26.3%~70.2%和60.0%~62.7%,同时加热效率分别提高了2.5%~41.7%和14.2%~14.6%,能有效地改善微波加热的温度均匀性。 展开更多
关键词 微波加热 多微波源 功频协同 热点交替 混沌博弈优化算法 均匀性
在线阅读 下载PDF
考虑随机场载荷不确定性的连续体结构可靠性拓扑优化
18
作者 程长征 王军基 +1 位作者 王选 杨博 《力学学报》 北大核心 2025年第2期535-544,共10页
提出了一种基于多项式混沌展开(polynomial chaos expansions,PCE)代理模型的高效可靠性拓扑优化(reliability-based topology optimization,RBTO)方法,用于处理考虑随机场载荷不确定性的可靠性设计问题.为此,建立了基于柔度响应定义的... 提出了一种基于多项式混沌展开(polynomial chaos expansions,PCE)代理模型的高效可靠性拓扑优化(reliability-based topology optimization,RBTO)方法,用于处理考虑随机场载荷不确定性的可靠性设计问题.为此,建立了基于柔度响应定义的概率约束下的结构体积分数最小化的单层循环RBTO模型,采用KarhunenLoève(K-L)展开式描述载荷随机场,利用蒙特卡罗模拟计算结构的失效概率.为了克服蒙特卡罗模拟方法在计算结构响应时计算成本高昂的问题,引入了PCE作为代理模型,高效地捕捉随机场载荷与结构柔度之间的复杂非线性关系.通过少量的高精度有限元分析样本,可以构建出高精度的PCE代理模型,一旦构建好代理模型的显式表达式,就可以直接基于代理模型在随机样本处计算失效概率,后续无需再进行有限元分析,从而在不牺牲太多精度的情况下,大幅减少后续计算的时间成本.详细推导了概率约束函数关于设计变量的灵敏度,采用移动渐近线方法(method of moving asymptotes,MMA)求解优化问题,将基于分析模型的RBTO方法与基于代理模型的RBTO方法作对比,验证了所提方法的有效性和优越性,并通过4个数值算例讨论了失效概率限值、柔度限值、载荷随机场均值与标准差以及相关长度对优化结果的影响.结果表明,不确定性因素增强时,结构需要消耗更多的材料来抵抗不确定性因素的干扰,另外基于代理模型的RBTO方法相对于基于分析模型的RBTO计算时间大幅缩短,提高了优化效率. 展开更多
关键词 拓扑优化 随机场 载荷不确定性 可靠性拓扑优化 多项式混沌展开
在线阅读 下载PDF
基于CPSO算法改进GM-Markov模型的港口货物吞吐量预测
19
作者 陈丹涌 王俞亮 +1 位作者 曾枫泓 吴承禧 《重庆交通大学学报(自然科学版)》 北大核心 2025年第8期108-115,共8页
针对广东揭阳港惠来港区货物吞吐量的非线性动态预测需求,提出一种基于混沌粒子群优化的GM-Markov组合预测模型。通过集成灰色GM(1,1)模型与Markov链的优势,采用Logistic映射实现粒子群参数与状态区间的混沌初始化,构建具有动态适应能... 针对广东揭阳港惠来港区货物吞吐量的非线性动态预测需求,提出一种基于混沌粒子群优化的GM-Markov组合预测模型。通过集成灰色GM(1,1)模型与Markov链的优势,采用Logistic映射实现粒子群参数与状态区间的混沌初始化,构建具有动态适应能力的预测框架;改进后的模型通过状态空间划分与独立概率转移矩阵计算,有效验证了港区2007—2022年吞吐量数据的随机波动特征。研究结果表明:优化模型将平均绝对百分比误差下降至8.06%,较传统方法显著提升了预测精度与稳定性,验证了该模型在动态系统预测中的工程适用性。 展开更多
关键词 交通运输工程 灰色马尔可夫理论 混沌粒子群优化算法 惠来港区 货物吞吐量预测
在线阅读 下载PDF
改进蜣螂优化算法的入侵检测特征选择
20
作者 刘涛 王愉露 《计算机工程与设计》 北大核心 2025年第7期1936-1943,共8页
针对网络入侵检测场景下蜣螂优化算法(DBO)收敛精度不高、易陷入局部最优等问题,提出一种混合策略改进的蜣螂优化算法(LSDBO)。利用Cubic映射初始化种群,使用反向学习策略与Levy螺旋搜索策略提升算法搜索能力,使用高斯与柯西变异扰动策... 针对网络入侵检测场景下蜣螂优化算法(DBO)收敛精度不高、易陷入局部最优等问题,提出一种混合策略改进的蜣螂优化算法(LSDBO)。利用Cubic映射初始化种群,使用反向学习策略与Levy螺旋搜索策略提升算法搜索能力,使用高斯与柯西变异扰动策略和贪婪策略提升算法的全局寻优能力。实验结果表明,在CIC-IDS2017数据集上的特征选择实验中,算法平均保留了8.1个特征,最优特征子集的平均准确率达到了98.01%,验证该算法在降低特征的同时可以确保准确率。 展开更多
关键词 蜣螂优化算法 混沌映射 螺旋搜索 入侵检测 特征选择 对立学习策略 高斯与柯西变异扰动
在线阅读 下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部