Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capa...Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.展开更多
It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only b...It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.展开更多
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular net...Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.展开更多
An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in...An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.展开更多
Reconfigurable intelligent surface(RIS)can manipulate the wireless propagation environment by smartly adjusting the amplitude/phase in a programmable panel,enjoying the improved performance.The accurate acquisition of...Reconfigurable intelligent surface(RIS)can manipulate the wireless propagation environment by smartly adjusting the amplitude/phase in a programmable panel,enjoying the improved performance.The accurate acquisition of the instantaneous channel state information(CSI)in the cascaded RIS chain makes an indispensable contribution to the performance gains.However,it is quite challenging to estimate the CSI in a time-variant scenario due to the limited signal processing capability of the passive elements embedded in a RIS pannel.In this work,a channel estimation scheme for the RIS-assisted wireless communication system is proposed,which is demonstrated to perform well in a time-variant scenario.The cascaded RIS channel is modeled as a state-space model based upon the mobility situations.In addition,to fully exploit the time correlation of channel,Kalman filter is employed by taking the prior information of channels into account.Further,the optimal reflection coefficients are derived according to the minimum mean square error(MMSE)criterion.Numerical results show that the proposed methods exhibit superior performance if compared with a conventional channel estimation scheme.展开更多
Coordinated signal processing can obtain a huge transmission gain for Fog Radio Access Networks(F-RANs).However,integrating into large scale,it will lead to high computation complexity in channel estimation and spectr...Coordinated signal processing can obtain a huge transmission gain for Fog Radio Access Networks(F-RANs).However,integrating into large scale,it will lead to high computation complexity in channel estimation and spectral efficiency loss in transmission performance.Thus,a joint cluster formation and channel estimation scheme is proposed in this paper.Considering research remote radio heads(RRHs)centred serving scheme,a coalition game is formulated in order to maximize the spectral efficiency of cooperative RRHs under the conditions of balancing the data rate and the cost of channel estimation.As the cost influences to the necessary consumption of training length and estimation error.Particularly,an iterative semi-blind channel estimation and symbol detection approach is designed by expectation maximization algorithm,where the channel estimation process is initialized by subspace method with lower pilot length.Finally,the simulation results show that a stable cluster formation is established by our proposed coalition game method and it outperforms compared with full coordinated schemes.展开更多
Relay in full-duplex(FD) mode can achieve higher spectrum efficiency than that in half-duplex mode,while it is crucial to suppress relay self-interference to ensure transmission quality which requires instantaneous ch...Relay in full-duplex(FD) mode can achieve higher spectrum efficiency than that in half-duplex mode,while it is crucial to suppress relay self-interference to ensure transmission quality which requires instantaneous channel state information(CSI). In this paper,the channel estimation issue in FD amplify-andforward relay networks is considered,where the training-based estimation technique is adopted. Firstly,the least square(LS) estimation is implemented to obtain composite channel coefficients of source-relay-destination(SRD) channel and relay loop-interference(LI) channel in order to assist destination in performing data detection. Secondly,both LS and maximum likelihood estimation methods are utilized to perform individual channel estimation aiming at supporting successive interference cancelation at destination. Finally,simulation results demonstrate the effectiveness of both composite and individual channel estimation,and the presented ML method can achieve lower MSEs than LS solution.展开更多
The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies ...The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.展开更多
Cellular vehicle-to-everything(C-V2X) communications is regarded as a promising and feasible solution for 5G-enabled vehicular communications and networking. In this paper, we investigate the pilot design and channel ...Cellular vehicle-to-everything(C-V2X) communications is regarded as a promising and feasible solution for 5G-enabled vehicular communications and networking. In this paper, we investigate the pilot design and channel estimation problem in MIMO-OFDM-based C-V2X systems with severe co-channel interference due to spectrum reusing among different V2X communication links. By using zero-correlation zone(ZCZ) sequences, we provide an interference-free pilot design scheme and a corresponding time-domain(TD) correlation-based channel estimation(TD-CCE) method. We employ the ZCZ sequences from the same family set to be designed as the TD pilot symbols and guarantee the pilot sequeneces for neighboring V2X communication links are code-division multiplexing(CDM). The co-channel pilot interference of the deisgned pilot symbols can be effectively eliminated by exploiting the provided TD-CCE method. Simulation results indicate that the accuracy of channel estimation can be effectively improved by the proposed scheme, whose performance is close to that of the non-interference situation.展开更多
In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of cal...In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of calculating amplitude,delay and Doppler scaling factor of each path using the received multi-path signal.This algorithm,called as OIP-FOMP,can reduce the computationally complexity of the traditional OMP algorithm and maintain accuracy in the presence of severe inter-carrier interference that exists in the time-varying UWA channels.In this algorithm,repeated inner product operations used in the OMP algorithm are removed by calculating the candidate path signature Hermitian inner product matrix in advance.Efficient QR decomposition is used to estimate the path amplitude,and the problem of reconstruction failure caused by inaccurate delay selection is avoided by optimizing the Hermitian inner product matrix.Theoretical analysis and simulation results show that the computational complexity of the OIP-FOMP algorithm is reduced by about 1/4 compared with the OMP algorithm,without any loss of accuracy.展开更多
Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration me...Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE.展开更多
The extra-large scale multiple-input multiple-output(XL-MIMO)for the beyond fifth/sixth generation mobile communications is a promising technology to provide Tbps data transmission and stable access service.However,th...The extra-large scale multiple-input multiple-output(XL-MIMO)for the beyond fifth/sixth generation mobile communications is a promising technology to provide Tbps data transmission and stable access service.However,the extremely large antenna array aperture arouses the channel near-field effect,resulting in the deteriorated data rate and other challenges in the practice communication systems.Meanwhile,multi-panel MIMO technology has attracted extensive attention due to its flexible configuration,low hardware cost,and wider coverage.By combining the XL-MIMO and multi-panel array structure,we construct multi-panel XL-MIMO and apply it to massive Internet of Things(IoT)access.First,we model the multi-panel XL-MIMO-based near-field channels for massive IoT access scenarios,where the electromagnetic waves corresponding to different panels have different angles of arrival/departure(AoAs/AoDs).Then,by exploiting the sparsity of the near-field massive IoT access channels,we formulate a compressed sensing based joint active user detection(AUD)and channel estimation(CE)problem which is solved by AMP-EM-MMV algorithm.The simulation results exhibit the superiority of the AMP-EM-MMV based joint AUD and CE scheme over the baseline algorithms.展开更多
In this paper, a quasi-Newton method fbr semi-blind estimation is derived for channel estimation in uplink cloud radio access networks (C-RANs). Different from traditional pilot-aided estimation, semiblind estimatio...In this paper, a quasi-Newton method fbr semi-blind estimation is derived for channel estimation in uplink cloud radio access networks (C-RANs). Different from traditional pilot-aided estimation, semiblind estimation utilizes the unknown data symbols in addition to the known pilot symbols to estimate the channel. An initial channel state information (CSI) obtained by least-squared (LS) estimation is needed in semi-blind estimation. BFGS (Brayben, Fletcher, Goldfarb and Shanno) algorithm, which employs data as well as pilot symbols, estimates the CSI though solving the problem provided by maximum-likelihood (ML) principle. In addition, mean-square-error (MSE) used to evaluate the estimation performance can be further minimized with an optimal pilot design. Simulation results show that the semi-blind estimation achieves a significant improvement in terms of MSE performance over the conventional LS estimation by utilizing data symbols instead of increasing the number of pilot symbols, which demonstrates the estimation accuracy and spectral efficiency are both improved by semiblind estimation for C-RANs.展开更多
Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a...Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.展开更多
Intelligent reflecting surface(IRS),with its unique capability of smartly reconfiguring wireless channels,provides a new solution to improving spectrum efficiency,reducing energy consumption and saving deployment/hard...Intelligent reflecting surface(IRS),with its unique capability of smartly reconfiguring wireless channels,provides a new solution to improving spectrum efficiency,reducing energy consumption and saving deployment/hardware cost for future wireless networks.In this paper,IRS-enabled spectrum sharing is investigated,from the perspectives of interference modeling,efficient channel estimation and robust passive beamforming design.Specifically,we first characterize the interference in a spectrum sharing system consisting of a single primary user(PU)pair and a single secondary user(SU)pair,and extend it to the large-scale network by leveraging the Poisson point process(PPP).Then,we propose an efficient channel estimation framework based on decoupling the cascaded IRS channels.Moreover,the tradeoff between spectrum efficiency and energy efficiency is derived from the view of channel estimation accuracy.Finally,we discuss the robust passive beamforming design in presence of imperfect channel estimation and nonideal/discrete phase shifts.It is hoped that this paper provides useful guidance for unlocking the full potential of IRS for achieving efficient spectrum sharing for future wireless networks.展开更多
An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIM...An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIMO OFDM) systems. In the proposed scheme, the recursive least squares (RLS) algorithm is applied to track the time varying channel impulse response (CIR) within several symbols. By using the tracked time varying CIR, the ICI are constructed and then cancelled from the received signal, thus reducing their impactions on the channel estimation. Moreover, based on an o ver sampled complex exponential basis expansion model ( OCE BEM), an improved channel predic tor is derived in order to improve the initial channel estimates accuracy of the iterative estimator. Simulation results show that ying scenarios with a smaller the proposed scheme outperforms the classic counterpart in time var cost of complexity.展开更多
The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughp...The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughput caused by CQEE, the robust MCS selection method and adaptive MCS switching scheme are proposed. In addition, automatic repeat request (ARQ) scheme is used to improve the block error rate (BLER) performance. Simulation results show that the proposed methods decrease the throughput loss resulted from CQEE efficiently and BLER performance gets better with ARQ scheme.展开更多
Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estim...Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system was designed. Simulation results show that the algorithm can control the power not only quickly but also precisely with a time change. The method is useful for increasing system capacity.展开更多
Space shift keying (SSK) is a spectrally efficient and low-complexity technique that only uses antenna index to convey information.Combining SSK with cooperative communication,the transmission reliability of SSK syste...Space shift keying (SSK) is a spectrally efficient and low-complexity technique that only uses antenna index to convey information.Combining SSK with cooperative communication,the transmission reliability of SSK system can be improved effectively.In this paper,considering imperfect channel information,the performance of cooperative SSK system with amplify-and-forward (AF) relaying protocol is investigated,and the effect of estimation error on the performance is analyzed.According to the performance analysis,the probability density function and moment generating function of effective signal-to-noise ratio are derived,respectively.Using these results,the closed-form expression of average bit error rate (BER) can be achieved.Meanwhile,the asymptotically approximated BER and the corresponding diversity order analysis are presented for the performance evaluation.By computer simulations,the validness of the presented theoretical analysis is verified,and the theoretical BERs with different estimation errors are shown to be close to those of the corresponding simulations.展开更多
基金supported in part by the Beijing Natural Science Foundation under Grant No.L202003the National Natural Science Foundation of China under Grant U22B2001 and 62271065the Project of China Railway Corporation under Grant N2022G048.
文摘Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.
文摘It is assumed that reconfigurable intelligent surface(RIS)is a key technology to enable the potential of mmWave communications.The passivity of the RIS makes channel estimation difficult because the channel can only be measured at the transceiver and not at the RIS.In this paper,we propose a novel separate channel estimator via exploiting the cascaded sparsity in the continuously valued angular domain of the cascaded channel for the RIS-enabled millimeter-wave/Tera-Hz systems,i.e.,the two-stage estimation method where the cascaded channel is separated into the base station(BS)-RIS and the RIS-user(UE)ones.Specifically,we first reveal the cascaded sparsity,i.e.,the sparsity exists in the hybrid angular domains of BS-RIS and the RIS-UEs separated channels,to construct the specific sparsity structure for RIS enabled multi-user systems.Then,we formulate the channel estimation problem using atomic norm minimization(ANM)to enhance the proposed sparsity structure in the continuous angular domains,where a low-complexity channel estimator via Alternating Direction Method of Multipliers(ADMM)is proposed.Simulation findings demonstrate that the proposed channel estimator outperforms the current state-of-the-arts in terms of performance.
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
基金supported by the Key Scientific Research Project in Colleges and Universities of Henan Province of China(Grant Nos.21A510003)Science and the Key Science and Technology Research Project of Henan Province of China(Grant Nos.222102210053)。
文摘Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.
文摘An integrated sensing and communication(ISAC)scheme for a millimeter wave(mmWave)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)Vehicle-to-Infrastructure(V2I)system is presented,in which both the access point(AP)and the vehicle are equipped with large antenna arrays and employ hybrid analog and digital beamforming structures to compensate the path loss,meanwhile compromise between hardware complexity and system performance.Based on the sparse scattering nature of the mmWave channel,the received signal at the AP is organized to a four-order tensor by the introduced novel frame structure.A CANDECOMP/PARAFAC(CP)decomposition-based method is proposed for time-varying channel parameter extraction,including angles of departure/arrival(AoDs/AoAs),Doppler shift,time delay and path gain.Then leveraging the estimates of channel parameters,a nonlinear weighted least-square problem is proposed to recover the location accurately,heading and velocity of vehicles.Simulation results show that the proposed methods are effective and efficient in time-varying channel estimation and vehicle sensing in mmWave MIMOOFDM V2I systems.
基金supported in part by National Natural Science Foundation of China(Grant Nos.61921003,61925101,61831002 and 61901315)in part by the Beijing Natural Science Foundation under(Grant No.JQ18016)in part by the Fundamental Research Funds for the Central Universities(Grant No.2020RC08).
文摘Reconfigurable intelligent surface(RIS)can manipulate the wireless propagation environment by smartly adjusting the amplitude/phase in a programmable panel,enjoying the improved performance.The accurate acquisition of the instantaneous channel state information(CSI)in the cascaded RIS chain makes an indispensable contribution to the performance gains.However,it is quite challenging to estimate the CSI in a time-variant scenario due to the limited signal processing capability of the passive elements embedded in a RIS pannel.In this work,a channel estimation scheme for the RIS-assisted wireless communication system is proposed,which is demonstrated to perform well in a time-variant scenario.The cascaded RIS channel is modeled as a state-space model based upon the mobility situations.In addition,to fully exploit the time correlation of channel,Kalman filter is employed by taking the prior information of channels into account.Further,the optimal reflection coefficients are derived according to the minimum mean square error(MMSE)criterion.Numerical results show that the proposed methods exhibit superior performance if compared with a conventional channel estimation scheme.
基金supported in part by the State Major Science and Technology Special Project(Grant No.2018ZX03001025)the National Natural Science Foundation of China(No.61831002 and No.61671074)the Fundamental Research Funds for the Central Universities under Grant No.2018XKJC01
文摘Coordinated signal processing can obtain a huge transmission gain for Fog Radio Access Networks(F-RANs).However,integrating into large scale,it will lead to high computation complexity in channel estimation and spectral efficiency loss in transmission performance.Thus,a joint cluster formation and channel estimation scheme is proposed in this paper.Considering research remote radio heads(RRHs)centred serving scheme,a coalition game is formulated in order to maximize the spectral efficiency of cooperative RRHs under the conditions of balancing the data rate and the cost of channel estimation.As the cost influences to the necessary consumption of training length and estimation error.Particularly,an iterative semi-blind channel estimation and symbol detection approach is designed by expectation maximization algorithm,where the channel estimation process is initialized by subspace method with lower pilot length.Finally,the simulation results show that a stable cluster formation is established by our proposed coalition game method and it outperforms compared with full coordinated schemes.
基金supported in part by the National High Technology Research and Development Program of China(Grant No.2014AA01A707)the Beijing Natural Science Foundation(Grant No.4131003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP)(Grant No.20120005140002)the Key Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (KZ201511232036)
文摘Relay in full-duplex(FD) mode can achieve higher spectrum efficiency than that in half-duplex mode,while it is crucial to suppress relay self-interference to ensure transmission quality which requires instantaneous channel state information(CSI). In this paper,the channel estimation issue in FD amplify-andforward relay networks is considered,where the training-based estimation technique is adopted. Firstly,the least square(LS) estimation is implemented to obtain composite channel coefficients of source-relay-destination(SRD) channel and relay loop-interference(LI) channel in order to assist destination in performing data detection. Secondly,both LS and maximum likelihood estimation methods are utilized to perform individual channel estimation aiming at supporting successive interference cancelation at destination. Finally,simulation results demonstrate the effectiveness of both composite and individual channel estimation,and the presented ML method can achieve lower MSEs than LS solution.
基金supported by the National Natural Science Foundation of China(Grant Nos.61522109,61671253,61571037and 91738201)the Fundamental Research Funds for the Central Universities(No.2016JBZ006)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20150040and BK20171446)the Key Project of Natural Science Research of Higher Education Institutions of Jiangsu Province(No.15KJA510003)
文摘The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.
文摘Cellular vehicle-to-everything(C-V2X) communications is regarded as a promising and feasible solution for 5G-enabled vehicular communications and networking. In this paper, we investigate the pilot design and channel estimation problem in MIMO-OFDM-based C-V2X systems with severe co-channel interference due to spectrum reusing among different V2X communication links. By using zero-correlation zone(ZCZ) sequences, we provide an interference-free pilot design scheme and a corresponding time-domain(TD) correlation-based channel estimation(TD-CCE) method. We employ the ZCZ sequences from the same family set to be designed as the TD pilot symbols and guarantee the pilot sequeneces for neighboring V2X communication links are code-division multiplexing(CDM). The co-channel pilot interference of the deisgned pilot symbols can be effectively eliminated by exploiting the provided TD-CCE method. Simulation results indicate that the accuracy of channel estimation can be effectively improved by the proposed scheme, whose performance is close to that of the non-interference situation.
基金supported in part by the National Natural Science Foundation of China(NSFC)(No.U1806201,61671261)Project of Shandong Province Higher Educational Science and Technology Program(No.J17KA058,J17KB154).
文摘In this paper,a fast orthogonal matching pursuit(OMP)algorithm based on optimized iterative process is proposed for sparse time-varying underwater acoustic(UWA)channel estimation.The channel estimation consists of calculating amplitude,delay and Doppler scaling factor of each path using the received multi-path signal.This algorithm,called as OIP-FOMP,can reduce the computationally complexity of the traditional OMP algorithm and maintain accuracy in the presence of severe inter-carrier interference that exists in the time-varying UWA channels.In this algorithm,repeated inner product operations used in the OMP algorithm are removed by calculating the candidate path signature Hermitian inner product matrix in advance.Efficient QR decomposition is used to estimate the path amplitude,and the problem of reconstruction failure caused by inaccurate delay selection is avoided by optimizing the Hermitian inner product matrix.Theoretical analysis and simulation results show that the computational complexity of the OIP-FOMP algorithm is reduced by about 1/4 compared with the OMP algorithm,without any loss of accuracy.
文摘Pilot pattern has a significant effect on the performance of channel estimation based on compressed sensing.However,because of the influence of the number of subcarriers and pilots,the complexity of the enumeration method is computationally impractical.The meta-heuristic algorithm of the salp swarm algorithm(SSA)is employed to address this issue.Like most meta-heuristic algorithms,the SSA algorithm is prone to problems such as local optimal values and slow convergence.In this paper,we proposed the CWSSA to enhance the optimization efficiency and robustness by chaotic opposition-based learning strategy,adaptive weight factor,and increasing local search.Experiments show that the test results of the CWSSA on most benchmark functions are better than those of other meta-heuristic algorithms.Besides,the CWSSA algorithm is applied to pilot pattern optimization,and its results are better than other methods in terms of BER and MSE.
基金supported by National Key Research and Development Program of China under Grants 2021YFB1600500,2021YFB3201502,and 2022YFB3207704Natural Science Foundation of China(NSFC)under Grants U2233216,62071044,61827901,62088101 and 62201056+1 种基金supported by Shandong Province Natural Science Foundation under Grant ZR2022YQ62supported by Beijing Nova Program,Beijing Institute of Technology Research Fund Program for Young Scholars under grant XSQD-202121009.
文摘The extra-large scale multiple-input multiple-output(XL-MIMO)for the beyond fifth/sixth generation mobile communications is a promising technology to provide Tbps data transmission and stable access service.However,the extremely large antenna array aperture arouses the channel near-field effect,resulting in the deteriorated data rate and other challenges in the practice communication systems.Meanwhile,multi-panel MIMO technology has attracted extensive attention due to its flexible configuration,low hardware cost,and wider coverage.By combining the XL-MIMO and multi-panel array structure,we construct multi-panel XL-MIMO and apply it to massive Internet of Things(IoT)access.First,we model the multi-panel XL-MIMO-based near-field channels for massive IoT access scenarios,where the electromagnetic waves corresponding to different panels have different angles of arrival/departure(AoAs/AoDs).Then,by exploiting the sparsity of the near-field massive IoT access channels,we formulate a compressed sensing based joint active user detection(AUD)and channel estimation(CE)problem which is solved by AMP-EM-MMV algorithm.The simulation results exhibit the superiority of the AMP-EM-MMV based joint AUD and CE scheme over the baseline algorithms.
基金supported in part by the the National High Technology Research and Devel-opment Program of China(Grant No.2014AA01A701)National Natural Science Foundation of China(Grant No.61361166005)+2 种基金the State Major Science and Technology Special Projects(Grant No.2016ZX03001020006)the National Program for Support of Top-notch Young Pro-fessionalsthe Science and Technology Development Project of Beijing Municipal Education Commission of China(Grant No.KZ201511232036)
文摘In this paper, a quasi-Newton method fbr semi-blind estimation is derived for channel estimation in uplink cloud radio access networks (C-RANs). Different from traditional pilot-aided estimation, semiblind estimation utilizes the unknown data symbols in addition to the known pilot symbols to estimate the channel. An initial channel state information (CSI) obtained by least-squared (LS) estimation is needed in semi-blind estimation. BFGS (Brayben, Fletcher, Goldfarb and Shanno) algorithm, which employs data as well as pilot symbols, estimates the CSI though solving the problem provided by maximum-likelihood (ML) principle. In addition, mean-square-error (MSE) used to evaluate the estimation performance can be further minimized with an optimal pilot design. Simulation results show that the semi-blind estimation achieves a significant improvement in terms of MSE performance over the conventional LS estimation by utilizing data symbols instead of increasing the number of pilot symbols, which demonstrates the estimation accuracy and spectral efficiency are both improved by semiblind estimation for C-RANs.
基金support by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAK05B01)
文摘Studies have indicated that the distributed compressed sensing based(DCSbased) channel estimation can decrease the length of the reference signals effectively. In block transmission, a unique word(UW) can be used as a cyclic prefix and reference signal. However, the DCS-based channel estimation requires diversity sequences instead of UW. In this paper, we proposed a novel method that employs a training sequence(TS) whose duration time is slightly longer than the maximum delay spread time. Based on proposed TS, the DCS approach perform perfectly in multipath channel estimation. Meanwhile, a cyclic prefix construct could be formed, which reduces the complexity of the frequency domain equalization(FDE) directly. Simulation results demonstrate that, by using the method of simultaneous orthogonal matching pursuit(SOMP), the required channel overhead has been reduced thanks to the proposed TS.
基金supported by the National Natural Science Foundation of China under Grant No. 62171461Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu under Grant No. BK20212001+2 种基金supported by the Macao Science and Technology Development Fund,Macao SAR,under Grant Nos. 0119/2020/A3, SKL-IOTSC-2021-2023 and 0108/2020/Athe Guangdong NSF under Grant No. 2021A1515011900the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University,under Grant No. 2021D15
文摘Intelligent reflecting surface(IRS),with its unique capability of smartly reconfiguring wireless channels,provides a new solution to improving spectrum efficiency,reducing energy consumption and saving deployment/hardware cost for future wireless networks.In this paper,IRS-enabled spectrum sharing is investigated,from the perspectives of interference modeling,efficient channel estimation and robust passive beamforming design.Specifically,we first characterize the interference in a spectrum sharing system consisting of a single primary user(PU)pair and a single secondary user(SU)pair,and extend it to the large-scale network by leveraging the Poisson point process(PPP).Then,we propose an efficient channel estimation framework based on decoupling the cascaded IRS channels.Moreover,the tradeoff between spectrum efficiency and energy efficiency is derived from the view of channel estimation accuracy.Finally,we discuss the robust passive beamforming design in presence of imperfect channel estimation and nonideal/discrete phase shifts.It is hoped that this paper provides useful guidance for unlocking the full potential of IRS for achieving efficient spectrum sharing for future wireless networks.
基金Supported by the National Natural Science Foundation of China(6096200161071088)
文摘An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIMO OFDM) systems. In the proposed scheme, the recursive least squares (RLS) algorithm is applied to track the time varying channel impulse response (CIR) within several symbols. By using the tracked time varying CIR, the ICI are constructed and then cancelled from the received signal, thus reducing their impactions on the channel estimation. Moreover, based on an o ver sampled complex exponential basis expansion model ( OCE BEM), an improved channel predic tor is derived in order to improve the initial channel estimates accuracy of the iterative estimator. Simulation results show that ying scenarios with a smaller the proposed scheme outperforms the classic counterpart in time var cost of complexity.
文摘The throughput performance of modulation and coding schemes (MCS) selection with channel quality estimation errors (CQEE) is analyzed for high-speed downlink packet access (HSDPA). To reduce the loss of throughput caused by CQEE, the robust MCS selection method and adaptive MCS switching scheme are proposed. In addition, automatic repeat request (ARQ) scheme is used to improve the block error rate (BLER) performance. Simulation results show that the proposed methods decrease the throughput loss resulted from CQEE efficiently and BLER performance gets better with ARQ scheme.
文摘Joint power control has advantages of multi-user detection and power control; and it can combat the multi-access interference and the near-far problem. A novel adaptive joint power control algorithm with channel estimation in a CDMA cellular system was designed. Simulation results show that the algorithm can control the power not only quickly but also precisely with a time change. The method is useful for increasing system capacity.
基金supported by the National Natural Science Foundation of China(Nos.61601220,61172077)the Foundation of Graduate Innovation Center in NUAA (No. kfjj20170410)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2017D03)the Six Talent Peaks Project of Jiangsu Province(No.2015-DZXX-007)
文摘Space shift keying (SSK) is a spectrally efficient and low-complexity technique that only uses antenna index to convey information.Combining SSK with cooperative communication,the transmission reliability of SSK system can be improved effectively.In this paper,considering imperfect channel information,the performance of cooperative SSK system with amplify-and-forward (AF) relaying protocol is investigated,and the effect of estimation error on the performance is analyzed.According to the performance analysis,the probability density function and moment generating function of effective signal-to-noise ratio are derived,respectively.Using these results,the closed-form expression of average bit error rate (BER) can be achieved.Meanwhile,the asymptotically approximated BER and the corresponding diversity order analysis are presented for the performance evaluation.By computer simulations,the validness of the presented theoretical analysis is verified,and the theoretical BERs with different estimation errors are shown to be close to those of the corresponding simulations.