The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the co...The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.展开更多
The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictio...The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.展开更多
An approach for generating test problems by a computer using the Monte Carlo method based upon user-given characterizations is described.A single point X~* is prespocified by the user to be a solution of the test prob...An approach for generating test problems by a computer using the Monte Carlo method based upon user-given characterizations is described.A single point X~* is prespocified by the user to be a solution of the test problems.The approach is flex- ible enough to specify function values,gradients,Hesse,degeneracy degree and ill- conditioned degree at the point X~*.Other numerical features such as indefiniteness, convexity are also under user's control.展开更多
A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to exten...A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.展开更多
Microfission chambers loaded with highly enriched fissile materials are widely used for measuring power in reactors. The neutron sensitivity of the microfission chamber is a key parameter that determines the accuracy ...Microfission chambers loaded with highly enriched fissile materials are widely used for measuring power in reactors. The neutron sensitivity of the microfission chamber is a key parameter that determines the accuracy of the power measurement. To evaluate the performance of the FC4A microfission chamber, in this work, we introduced an accurate and validated model of the microfission chamber, a performed Monte Carlo simulation of the neutron sensitivity of the microfission chamber with GEANT4 code, and conducted an irradiation experiment on the neutron irradiation effect platform #3 of the Xi’an Pulsed Reactor. We compared the simulated sensitivity with the experimental results, which showed that the sensitivity obtained from the simulation was in good agreement with the experimental results. In addition, we studied the impact of the design parameters of the fission chamber on the calculated neutron sensitivity of the microfission chamber.展开更多
In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various accelerati...In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various acceleration methods have been developed,some methods cannot reduce convergence times,whereas others have been limited to specific problem geometries.In this study,a new fission source convergence acceleration(FSCA)method,the forced propagation(FP)method,has been proposed,which forces the fission source to propagate and accelerate fission source convergence.Additionally,some stabilization techniques have been designed to render the method more practical.The resulting stabilized method was then successfully implemented in the MC transport code,and its feasibility and effectiveness were tested using the modified OECD/NEA,one-dimensional slab benchmark,and the Hoogenboom full-core problem.The comparison results showed that the FP method was able to achieve efficient FSCA.展开更多
One of the most critical and complicated steps in mine design is a selection of suitable mining method based upon geological,geotechnical,geographical,safety and economical parameters.The aim of this study is developi...One of the most critical and complicated steps in mine design is a selection of suitable mining method based upon geological,geotechnical,geographical,safety and economical parameters.The aim of this study is developing a Monte Carlo simulation to selection the optimum mining method by using effective and major criteria and at the same time,taking subjective judgments of decision makers into consideration.Proposed approach is based on the combination of Monte Carlo simulation with conventional Analytic Hierarchy Process(AHP).Monte Carlo simulation is used to determine the confdence level of each alternative’s score,is calculated by AHP,with the respect to the variance of decision makers’opinion.The proposed method is applied for Jajarm Bauxite Mine in Iran and eventually the most appropriate mining methods for this mine are ranked.展开更多
Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain M...Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.展开更多
The Local Monte Carlo(LMC)method is used to solve the problems of deep penetration and long time in the neutronics calculation of the radial neutron camera(RNC)diagnostic system on the experimental advanced supercondu...The Local Monte Carlo(LMC)method is used to solve the problems of deep penetration and long time in the neutronics calculation of the radial neutron camera(RNC)diagnostic system on the experimental advanced superconducting tokamak(EAST),and the radiation distribution of the RNC and the neutron flux at the detector positions of each channel are obtained.Compared with the results calculated by the global variance reduction method,it is shown that the LMC calculation is reliable within the reasonable error range.The calculation process of LMC is analyzed in detail,and the transport process of radiation particles is simulated in two steps.In the first step,an integrated neutronics model considering the complex window environment and a neutron source model based on EAST plasma shape are used to support the calculation.The particle information on the equivalent surface is analyzed to evaluate the rationality of settings of equivalent surface source and boundary.Based on the characteristic that only a local geometric model is needed in the second step,it is shown that the LMC is an advantageous calculation method for the nuclear shielding design of tokamak diagnostic systems.展开更多
Considering the ocean water's optical attenuation and the roughness of the sea surface, we analyze the security of continuous-variable (CV) quantum key distribution (QKD) based Mr-to-water channel. The effects of...Considering the ocean water's optical attenuation and the roughness of the sea surface, we analyze the security of continuous-variable (CV) quantum key distribution (QKD) based Mr-to-water channel. The effects of the absorp- tion and scattering on the transmittance of underwater quantum channel and the maximum secure transmission distance are studied. Considering the roughness of the sea surface, we simulate the performance bounds of CV QKD with different wind speeds using the Monte Carlo method. The results show that even if the secret key rate gradually reduces as the wind speed increases, the maximum transmission distance will not be affected obviously. Compared to the works regarding short-distance underwater optical communication, our research represents a significant step towards establishing secure communication between air platform and submarine vehicle.展开更多
Speckle intensity in the detector plane is deduced in the free-space optical system and imaging system based on Van Cittert-Zemike theorem. The speckle intensity images of plane target and conical target are obtained ...Speckle intensity in the detector plane is deduced in the free-space optical system and imaging system based on Van Cittert-Zemike theorem. The speckle intensity images of plane target and conical target are obtained by using the Monte Carlo method and measured experimentally. The results show that when the range extent of target is smaller, the speckle size along the same direction become longer, and the speckle size increase with increasing incident light wavelengths. The speckle size increases and the speckle intensity images of target is closer to the actual object when the aperture scale augments. These findings are useful to access the target information by speckle in laser radar systems.展开更多
A model is constructed and used in computing the coagulation probability of free carbon during the detonation of explosives. A direct simulation Monte Carlo (DSMC) program is constructed to simulate the coagulation of...A model is constructed and used in computing the coagulation probability of free carbon during the detonation of explosives. A direct simulation Monte Carlo (DSMC) program is constructed to simulate the coagulation of free carbon particles. The evaluation of the distribution spectrum of particles in the system is obtained. The simulation result is consistent with the experimental curve.展开更多
Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and low...Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.展开更多
文摘The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.
基金Project supported by the Hefei National Research Center for Physical Sciences at the Microscale (Grant No.KF2021002)the Natural Science Foundation of Shanxi Province,China (Grant Nos.202303021221029 and 202103021224051)+2 种基金the National Natural Science Foundation of China (Grant Nos.11975024,12047503,and 12275263)the Anhui Provincial Supporting Program for Excellent Young Talents in Colleges and Universities (Grant No.gxyq ZD2019023)the National Key Research and Development Program of China (Grant No.2018YFA0306501)。
文摘The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy.At low temperatures,theoretical predictions[Phys.Rev.A 72053604(2005)]and[arXiv:0706.1609]indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering.However,due to ergodic difficulties faced by Monte Carlo methods at low temperatures,this topological phase has not been numerically explored.We propose a linear cluster updating Monte Carlo method,which flips spins without rejection in the anisotropy limit but does not change the energy.Using this scheme and conventional Monte Carlo methods,we succeed in revealing the nature of topological phases with half-vortices and domain walls.In the constructed global phase diagram,Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier.We also propose and explore a wide range of quantities,including magnetism,superfluidity,specific heat,susceptibility,and even percolation susceptibility,and obtain consistent and reliable results.Furthermore,we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes,as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections.The critical exponents of different types of phase transitions are reasonably fitted.The results are useful to help cold atom experiments explore the half-vortex topological phase.
文摘An approach for generating test problems by a computer using the Monte Carlo method based upon user-given characterizations is described.A single point X~* is prespocified by the user to be a solution of the test problems.The approach is flex- ible enough to specify function values,gradients,Hesse,degeneracy degree and ill- conditioned degree at the point X~*.Other numerical features such as indefiniteness, convexity are also under user's control.
基金Project supported by the Special Foundation for State Major Basic Research Program of China (Grant No G2000035602) and the National Natural Science Foundation of China (Grant No 90307006).
文摘A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.
文摘Microfission chambers loaded with highly enriched fissile materials are widely used for measuring power in reactors. The neutron sensitivity of the microfission chamber is a key parameter that determines the accuracy of the power measurement. To evaluate the performance of the FC4A microfission chamber, in this work, we introduced an accurate and validated model of the microfission chamber, a performed Monte Carlo simulation of the neutron sensitivity of the microfission chamber with GEANT4 code, and conducted an irradiation experiment on the neutron irradiation effect platform #3 of the Xi’an Pulsed Reactor. We compared the simulated sensitivity with the experimental results, which showed that the sensitivity obtained from the simulation was in good agreement with the experimental results. In addition, we studied the impact of the design parameters of the fission chamber on the calculated neutron sensitivity of the microfission chamber.
基金supported by the National Natural Science Foundation of China(Nos.11775126,11545013,11605101)the Young Elite Scientists Sponsorship Program by CAST(No.2016QNRC001)+1 种基金Science Challenge Project by MIIT of China(No.TZ2018001)Tsinghua University,Initiative Scientific Research Program。
文摘In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various acceleration methods have been developed,some methods cannot reduce convergence times,whereas others have been limited to specific problem geometries.In this study,a new fission source convergence acceleration(FSCA)method,the forced propagation(FP)method,has been proposed,which forces the fission source to propagate and accelerate fission source convergence.Additionally,some stabilization techniques have been designed to render the method more practical.The resulting stabilized method was then successfully implemented in the MC transport code,and its feasibility and effectiveness were tested using the modified OECD/NEA,one-dimensional slab benchmark,and the Hoogenboom full-core problem.The comparison results showed that the FP method was able to achieve efficient FSCA.
文摘One of the most critical and complicated steps in mine design is a selection of suitable mining method based upon geological,geotechnical,geographical,safety and economical parameters.The aim of this study is developing a Monte Carlo simulation to selection the optimum mining method by using effective and major criteria and at the same time,taking subjective judgments of decision makers into consideration.Proposed approach is based on the combination of Monte Carlo simulation with conventional Analytic Hierarchy Process(AHP).Monte Carlo simulation is used to determine the confdence level of each alternative’s score,is calculated by AHP,with the respect to the variance of decision makers’opinion.The proposed method is applied for Jajarm Bauxite Mine in Iran and eventually the most appropriate mining methods for this mine are ranked.
基金the sponsorship of the National Basic Research Program of China (973 Program,2013CB228604,2014CB239201)the National Oil and Gas Major Projects of China (2011ZX05014-001-010HZ,2011ZX05014-001-006-XY570) for their funding of this research
文摘Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.
基金support and help in this research.This work was supported by Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE012)Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11605241)。
文摘The Local Monte Carlo(LMC)method is used to solve the problems of deep penetration and long time in the neutronics calculation of the radial neutron camera(RNC)diagnostic system on the experimental advanced superconducting tokamak(EAST),and the radiation distribution of the RNC and the neutron flux at the detector positions of each channel are obtained.Compared with the results calculated by the global variance reduction method,it is shown that the LMC calculation is reliable within the reasonable error range.The calculation process of LMC is analyzed in detail,and the transport process of radiation particles is simulated in two steps.In the first step,an integrated neutronics model considering the complex window environment and a neutron source model based on EAST plasma shape are used to support the calculation.The particle information on the equivalent surface is analyzed to evaluate the rationality of settings of equivalent surface source and boundary.Based on the characteristic that only a local geometric model is needed in the second step,it is shown that the LMC is an advantageous calculation method for the nuclear shielding design of tokamak diagnostic systems.
基金Supported by the National Natural Science Foundation of China under Grant No 61572529
文摘Considering the ocean water's optical attenuation and the roughness of the sea surface, we analyze the security of continuous-variable (CV) quantum key distribution (QKD) based Mr-to-water channel. The effects of the absorp- tion and scattering on the transmittance of underwater quantum channel and the maximum secure transmission distance are studied. Considering the roughness of the sea surface, we simulate the performance bounds of CV QKD with different wind speeds using the Monte Carlo method. The results show that even if the secret key rate gradually reduces as the wind speed increases, the maximum transmission distance will not be affected obviously. Compared to the works regarding short-distance underwater optical communication, our research represents a significant step towards establishing secure communication between air platform and submarine vehicle.
基金Project supported by the National Natural Sciences Foundation of China(Grant No.61172031)the Fundamental Research Funds for the Central Universities of China(Grant No.K50511070005)
文摘Speckle intensity in the detector plane is deduced in the free-space optical system and imaging system based on Van Cittert-Zemike theorem. The speckle intensity images of plane target and conical target are obtained by using the Monte Carlo method and measured experimentally. The results show that when the range extent of target is smaller, the speckle size along the same direction become longer, and the speckle size increase with increasing incident light wavelengths. The speckle size increases and the speckle intensity images of target is closer to the actual object when the aperture scale augments. These findings are useful to access the target information by speckle in laser radar systems.
文摘A model is constructed and used in computing the coagulation probability of free carbon during the detonation of explosives. A direct simulation Monte Carlo (DSMC) program is constructed to simulate the coagulation of free carbon particles. The evaluation of the distribution spectrum of particles in the system is obtained. The simulation result is consistent with the experimental curve.
文摘Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.