A novel coding based method named as local binary orientation code (LBOCode) for palmprint recognition is proposed. The palmprint image is firstly convolved with a bank of Gabor filters, and then the orientation inf...A novel coding based method named as local binary orientation code (LBOCode) for palmprint recognition is proposed. The palmprint image is firstly convolved with a bank of Gabor filters, and then the orientation information is attained with a winner-take-all rule. Subsequently, the resulting orientation mapping array is operated by uniform local binary pattern. Accordingly, LBOCode image is achieved which contains palmprint orientation information in pixel level. Further we divide the LBOCode image into several equal-size and nonoverlapping regions, and extract the statistical code histogram from each region independently, which builds a global description of palmprint in regional level. In matching stage, the matching score between two palmprints is achieved by calculating the two spatial enhanced histograms' dissimilarity, which brings the benefit of computational simplicity. Experimental results demonstrate that the proposed method achieves more promising recognition performance compared with that of several state-of-the-art methods.展开更多
为研究信号相关性在语音情感识别中的作用,提出了一种面向语音情感识别的语谱图特征提取算法.首先,对语谱图进行处理,得到归一化后的语谱图灰度图像;然后,计算不同尺度、不同方向的Gabor图谱,并采用局部二值模式提取Gabor图谱的纹理特征...为研究信号相关性在语音情感识别中的作用,提出了一种面向语音情感识别的语谱图特征提取算法.首先,对语谱图进行处理,得到归一化后的语谱图灰度图像;然后,计算不同尺度、不同方向的Gabor图谱,并采用局部二值模式提取Gabor图谱的纹理特征;最后,将不同尺度、不同方向Gabor图谱提取到的局部二值模式特征进行级联,作为一种新的语音情感特征进行情感识别.柏林库(EMO-DB)及FAU Ai Bo库上的实验结果表明:与已有的韵律、频域、音质特征相比,所提特征的识别率提升3%以上;与声学特征融合后,所提特征的识别率较早期声学特征至少提高5%.因此,利用这种新的语音情感特征可以有效识别不同种类的情感语音.展开更多
mean shift目标跟踪使用任一个单独特征都很难对大幅度的光照、背景变化和车辆大范围运动具有强鲁棒性,如单一的颜色特征对光照较为敏感,光照突变容易导致目标丢失。当背景颜色和目标颜色相近时也易造成目标丢失,因此利用目标的单一特...mean shift目标跟踪使用任一个单独特征都很难对大幅度的光照、背景变化和车辆大范围运动具有强鲁棒性,如单一的颜色特征对光照较为敏感,光照突变容易导致目标丢失。当背景颜色和目标颜色相近时也易造成目标丢失,因此利用目标的单一特征信息往往很难实现鲁棒的目标跟踪。文章提出基于颜色和LBP多特征mean shift跟踪方法,使跟踪结果不再过分依赖某一特征,增强了对背景变化、目标大范围运动的鲁棒性。展开更多
基金supported partly by the National Grand Fundamental Research 973 Program of China under Grant No. 2004CB318005the Doctoral Candidate Outstanding Innovation Foundation under Grant No.141092522the Fundamental Research Funds under Grant No.2009YJS025
文摘A novel coding based method named as local binary orientation code (LBOCode) for palmprint recognition is proposed. The palmprint image is firstly convolved with a bank of Gabor filters, and then the orientation information is attained with a winner-take-all rule. Subsequently, the resulting orientation mapping array is operated by uniform local binary pattern. Accordingly, LBOCode image is achieved which contains palmprint orientation information in pixel level. Further we divide the LBOCode image into several equal-size and nonoverlapping regions, and extract the statistical code histogram from each region independently, which builds a global description of palmprint in regional level. In matching stage, the matching score between two palmprints is achieved by calculating the two spatial enhanced histograms' dissimilarity, which brings the benefit of computational simplicity. Experimental results demonstrate that the proposed method achieves more promising recognition performance compared with that of several state-of-the-art methods.
文摘为研究信号相关性在语音情感识别中的作用,提出了一种面向语音情感识别的语谱图特征提取算法.首先,对语谱图进行处理,得到归一化后的语谱图灰度图像;然后,计算不同尺度、不同方向的Gabor图谱,并采用局部二值模式提取Gabor图谱的纹理特征;最后,将不同尺度、不同方向Gabor图谱提取到的局部二值模式特征进行级联,作为一种新的语音情感特征进行情感识别.柏林库(EMO-DB)及FAU Ai Bo库上的实验结果表明:与已有的韵律、频域、音质特征相比,所提特征的识别率提升3%以上;与声学特征融合后,所提特征的识别率较早期声学特征至少提高5%.因此,利用这种新的语音情感特征可以有效识别不同种类的情感语音.