Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The ...Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.展开更多
In this work, the stability issues of the equilibrium points of the cellular neural networks with multiple time delays and impulsive effects are investigated. Based on the stability theory of Lyapunov-Krasovskii, the ...In this work, the stability issues of the equilibrium points of the cellular neural networks with multiple time delays and impulsive effects are investigated. Based on the stability theory of Lyapunov-Krasovskii, the method of linear matrix inequality (LMI) and parametrized first-order model transformation, several novel conditions guaranteeing the delaydependent and the delay-independent exponential stabilities are obtained. A numerical example is given to illustrate the effectiveness of our results.展开更多
基金supported by No. DST/INSPIRE Fellowship/2010/[293]/dt. 18/03/2011
文摘Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60604007 and 50775226)
文摘In this work, the stability issues of the equilibrium points of the cellular neural networks with multiple time delays and impulsive effects are investigated. Based on the stability theory of Lyapunov-Krasovskii, the method of linear matrix inequality (LMI) and parametrized first-order model transformation, several novel conditions guaranteeing the delaydependent and the delay-independent exponential stabilities are obtained. A numerical example is given to illustrate the effectiveness of our results.