Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first prop...Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first proposed in this paper.Here,a novel four-dimensional fractional-order memristive cellular neural network(FO-MCNN)model with hidden attractors is constructed to enhance the engineering feasibility of the original CNN model and its performance.Then,its hardware circuit implementation and complicated dynamic properties are investigated on multi-simulation platforms.Subsequently,it is used toward secure communication application scenarios.Taking it as the pseudo-random number generator(PRNG),a new privacy image security scheme is designed based on the adaptive sampling rate compressive sensing(ASR-CS)model.Eventually,the simulation analysis and comparative experiments manifest that the proposed data encryption scheme possesses strong immunity against various security attack models and satisfactory compression performance.展开更多
In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset o...In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset of chaotic oscillation. The theoretical analysis and simulation for the two Josephson-circuits-coupled QCNN have been done by using the amplitude and phase as state variables. The complex chaotic behaviours can be observed and then proved by calculating Lyapunov exponents. The study provides valuable information about QCNNs for future application in high-parallel signal processing and novel chaotic generators.展开更多
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来...滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。展开更多
This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point,...This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result.展开更多
With the polarization of quantum-dot cell and quantum phase serving as state variables, this paper does both theoretical analysis and simulation for the complex nonlinear dynamical behaviour of a three-cell-coupled Qu...With the polarization of quantum-dot cell and quantum phase serving as state variables, this paper does both theoretical analysis and simulation for the complex nonlinear dynamical behaviour of a three-cell-coupled Quantum Cellular Neural Network (QCNN), including equilibrium points, bifurcation and chaotic behaviour. Different phenomena, such as quasi-periodic, chaotic and hyper-chaotic states as well as bifurcations are revealed. The system's bifurcation and chaotic behaviour under the influence of the different coupling parameters are analysed. And it finds that the unbalanced cells coupled QCNN is easy to cause chaotic oscillation and the system response enters into chaotic state from quasi-periodic state by quasi-period bifurcation; however, the balanced cells coupled QCNN also can be chaotic when coupling parameters is in some region. Additionally, both the unbalanced and balanced cells coupled QCNNs can possess hyper-chaotic behaviour. It provides valuable information about QCNNs for future application in high-parallel signal processing and novel ultra-small chaotic generators.展开更多
The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos ...The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corre- sponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi...The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.展开更多
This paper presents a new hyperbolic-type memristor model,whose frequency-dependent pinched hysteresis loops and equivalent circuit are tested by numerical simulations and analog integrated operational amplifier circu...This paper presents a new hyperbolic-type memristor model,whose frequency-dependent pinched hysteresis loops and equivalent circuit are tested by numerical simulations and analog integrated operational amplifier circuits.Based on the hyperbolic-type memristor model,we design a cellular neural network(CNN)with 3-neurons,whose characteristics are analyzed by bifurcations,basins of attraction,complexity analysis,and circuit simulations.We find that the memristive CNN can exhibit some complex dynamic behaviors,including multi-equilibrium points,state-dependent bifurcations,various coexisting chaotic and periodic attractors,and offset of the positions of attractors.By calculating the complexity of the memristor-based CNN system through the spectral entropy(SE)analysis,it can be seen that the complexity curve is consistent with the Lyapunov exponent spectrum,i.e.,when the system is in the chaotic state,its SE complexity is higher,while when the system is in the periodic state,its SE complexity is lower.Finally,the realizability and chaotic characteristics of the memristive CNN system are verified by an analog circuit simulation experiment.展开更多
In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generaliz...In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generalized Halanay inequality, a few new applicable criteria are established for the existence and global exponential stability of almost periodic solution. Some previous results are improved and extended in this letter and one example is given to illustrate the effectiveness of the new results.展开更多
In this work, the stability issues of the equilibrium points of the cellular neural networks with multiple time delays and impulsive effects are investigated. Based on the stability theory of Lyapunov-Krasovskii, the ...In this work, the stability issues of the equilibrium points of the cellular neural networks with multiple time delays and impulsive effects are investigated. Based on the stability theory of Lyapunov-Krasovskii, the method of linear matrix inequality (LMI) and parametrized first-order model transformation, several novel conditions guaranteeing the delaydependent and the delay-independent exponential stabilities are obtained. A numerical example is given to illustrate the effectiveness of our results.展开更多
The cellular neural networks with delay (DCNN’s) are investigated, and some new sufficient conditions on asymptotical stability of DCNN’s are derived by constructing the Liapunov functional and utilizing M ? matrixa...The cellular neural networks with delay (DCNN’s) are investigated, and some new sufficient conditions on asymptotical stability of DCNN’s are derived by constructing the Liapunov functional and utilizing M ? matrixand theω?limit set. It is shown that the new conditions are not related to the delayed parameter.展开更多
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The ...Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.展开更多
This paper describes the problem of stability for one-dimensional Cellular Neural Networks(CNNs). A sufficient condition is presented to ensure complete stability for a class of special CNN's with nonsymmetric temp...This paper describes the problem of stability for one-dimensional Cellular Neural Networks(CNNs). A sufficient condition is presented to ensure complete stability for a class of special CNN's with nonsymmetric templates, where the parameter in the output function is greater than or equal to zero. The main method is analysising the property of the equilibrium point of the CNNs system.展开更多
文摘Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first proposed in this paper.Here,a novel four-dimensional fractional-order memristive cellular neural network(FO-MCNN)model with hidden attractors is constructed to enhance the engineering feasibility of the original CNN model and its performance.Then,its hardware circuit implementation and complicated dynamic properties are investigated on multi-simulation platforms.Subsequently,it is used toward secure communication application scenarios.Taking it as the pseudo-random number generator(PRNG),a new privacy image security scheme is designed based on the adaptive sampling rate compressive sensing(ASR-CS)model.Eventually,the simulation analysis and comparative experiments manifest that the proposed data encryption scheme possesses strong immunity against various security attack models and satisfactory compression performance.
基金Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No 2005F20) and the Innovation Funds of the College of Science, Air Force University of Engineering, China (Grant No 2007B003).
文摘In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset of chaotic oscillation. The theoretical analysis and simulation for the two Josephson-circuits-coupled QCNN have been done by using the amplitude and phase as state variables. The complex chaotic behaviours can be observed and then proved by calculating Lyapunov exponents. The study provides valuable information about QCNNs for future application in high-parallel signal processing and novel chaotic generators.
文摘滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。
基金Project supported by the National Natural Science Foundations of China(Grant No.70871056)the Society Science Foundation from Ministry of Education of China(Grant No.08JA790057)the Advanced Talents'Foundation and Student's Foundation of Jiangsu University,China(Grant Nos.07JDG054 and 07A075)
文摘This paper concernes analysis for the global exponential stability of a class of recurrent neural networks with mixed discrete and distributed delays. It first proves the existence and uniqueness of the balance point, then by employing the Lyapunov-Krasovskii functional and Young inequality, it gives the sufficient condition of global exponential stability of cellular neural network with mixed discrete and distributed delays, in addition, the example is provided to illustrate the applicability of the result.
基金supported by the Natural Science Foundation of Shaanxi Province, China (Grant No 2005F20)the Innovation Funds of the College of Science,Air Force University of Engineering (2007B003)
文摘With the polarization of quantum-dot cell and quantum phase serving as state variables, this paper does both theoretical analysis and simulation for the complex nonlinear dynamical behaviour of a three-cell-coupled Quantum Cellular Neural Network (QCNN), including equilibrium points, bifurcation and chaotic behaviour. Different phenomena, such as quasi-periodic, chaotic and hyper-chaotic states as well as bifurcations are revealed. The system's bifurcation and chaotic behaviour under the influence of the different coupling parameters are analysed. And it finds that the unbalanced cells coupled QCNN is easy to cause chaotic oscillation and the system response enters into chaotic state from quasi-periodic state by quasi-period bifurcation; however, the balanced cells coupled QCNN also can be chaotic when coupling parameters is in some region. Additionally, both the unbalanced and balanced cells coupled QCNNs can possess hyper-chaotic behaviour. It provides valuable information about QCNNs for future application in high-parallel signal processing and novel ultra-small chaotic generators.
基金supported by Key Program of Natural Science Fund of Tianjin of China (Grant No 07JCZDJC06600)
文摘The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corre- sponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金supported by the Universiti Tunku Abdul Rahman (UTAR) Malaysia under UTARRF (IPSR/RMC/UTARRF/2021-C1/T05)
文摘The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.61771176 and 62171173)。
文摘This paper presents a new hyperbolic-type memristor model,whose frequency-dependent pinched hysteresis loops and equivalent circuit are tested by numerical simulations and analog integrated operational amplifier circuits.Based on the hyperbolic-type memristor model,we design a cellular neural network(CNN)with 3-neurons,whose characteristics are analyzed by bifurcations,basins of attraction,complexity analysis,and circuit simulations.We find that the memristive CNN can exhibit some complex dynamic behaviors,including multi-equilibrium points,state-dependent bifurcations,various coexisting chaotic and periodic attractors,and offset of the positions of attractors.By calculating the complexity of the memristor-based CNN system through the spectral entropy(SE)analysis,it can be seen that the complexity curve is consistent with the Lyapunov exponent spectrum,i.e.,when the system is in the chaotic state,its SE complexity is higher,while when the system is in the periodic state,its SE complexity is lower.Finally,the realizability and chaotic characteristics of the memristive CNN system are verified by an analog circuit simulation experiment.
文摘In this paper, global exponential stability of almost periodic solution of cellular neural networks with time-varing delays (CNNVDs) is considered. By using the methods of the topological degree theory and generalized Halanay inequality, a few new applicable criteria are established for the existence and global exponential stability of almost periodic solution. Some previous results are improved and extended in this letter and one example is given to illustrate the effectiveness of the new results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60604007 and 50775226)
文摘In this work, the stability issues of the equilibrium points of the cellular neural networks with multiple time delays and impulsive effects are investigated. Based on the stability theory of Lyapunov-Krasovskii, the method of linear matrix inequality (LMI) and parametrized first-order model transformation, several novel conditions guaranteeing the delaydependent and the delay-independent exponential stabilities are obtained. A numerical example is given to illustrate the effectiveness of our results.
基金Supported by the the National Natural Science Foundation of China (No.90208003, 30200059) and the Science and Technology Research Foundation of Education Ministry of China (No.02065)
文摘The cellular neural networks with delay (DCNN’s) are investigated, and some new sufficient conditions on asymptotical stability of DCNN’s are derived by constructing the Liapunov functional and utilizing M ? matrixand theω?limit set. It is shown that the new conditions are not related to the delayed parameter.
基金supported by No. DST/INSPIRE Fellowship/2010/[293]/dt. 18/03/2011
文摘Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov-Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.
基金Supported by the NSF of Zhejiang Province(M103087) Supported by the Science Research Fund of Hushou Teacher's College
文摘This paper describes the problem of stability for one-dimensional Cellular Neural Networks(CNNs). A sufficient condition is presented to ensure complete stability for a class of special CNN's with nonsymmetric templates, where the parameter in the output function is greater than or equal to zero. The main method is analysising the property of the equilibrium point of the CNNs system.