期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A new discriminative sparse parameter classifier with iterative removal for face recognition
1
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
在线阅读 下载PDF
基于级联稀疏表示分类器的人脸识别算法 被引量:2
2
作者 杨宇 《工矿自动化》 北大核心 2014年第5期46-48,共3页
针对基于稀疏表示的分类器算法复杂度高、识别速度较慢的问题,提出了基于级联稀疏表示分类器的人脸识别算法。该算法采用级联的思想,通过多次重复使用基于稀疏表示的分类器,逐级精确确定待分类样本所在的类,降低了计算复杂度和识别难度... 针对基于稀疏表示的分类器算法复杂度高、识别速度较慢的问题,提出了基于级联稀疏表示分类器的人脸识别算法。该算法采用级联的思想,通过多次重复使用基于稀疏表示的分类器,逐级精确确定待分类样本所在的类,降低了计算复杂度和识别难度,达到了识别率高、鲁棒性强、识别速度快的目标。 展开更多
关键词 人脸识别 级联稀疏表示分类器 识别率 鲁棒性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部