期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
1
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
在线阅读 下载PDF
Parameters of static response of carbon fiber reinforced polymer(CFRP) suspension cables
2
作者 王立彬 吴勇 Mohammad Noori 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3123-3132,共10页
The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co... The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically. 展开更多
关键词 suspension bridge carbon fiber reinforced polymer (CFRP) main cable steel suspension cable static response
在线阅读 下载PDF
Effect of fiber angle on LYP steel shear walls behavior 被引量:2
3
作者 Farzad Hatami Ali Ghamari Farshad Hatami 《Journal of Central South University》 SCIE EI CAS 2014年第2期768-774,共7页
Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher pr... Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation. 展开更多
关键词 carbon fiber reinforced polymers fiber angle low yield point steel shear wall post buckling COMPOSITE
在线阅读 下载PDF
碳纤维增强复合材料加固混凝土粘结性能试验 被引量:18
4
作者 佘泽昇 雷冬 +2 位作者 何锦涛 朱飞鹏 白鹏翔 《科学技术与工程》 北大核心 2022年第6期2428-2436,共9页
碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)加固混凝土技术在桥梁工程与建筑工程中有大量应用,而直接影响工程结构加固维修的关键因素是其界面粘结性能,因此开展相关试验研究对保障工程安全具有重大意义。以一种基于专... 碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)加固混凝土技术在桥梁工程与建筑工程中有大量应用,而直接影响工程结构加固维修的关键因素是其界面粘结性能,因此开展相关试验研究对保障工程安全具有重大意义。以一种基于专门设计的试验装置进行弯曲剪切试验来研究CFRP-混凝土界面的粘结性能。利用数字图像相关(digital image correlation,DIC)法得到的应变场确定碳纤维布的脱粘长度,同时对碳纤维增强材料的性能进行了理论分析,探讨了试验中的力学响应。结果表明:弯剪破坏的原因是弯矩的增大导致界面粘结强度和极限荷载的降低。通过对比弯剪试验和理论应变分布曲线,证明试验的有效性。粘结区在弯曲作用下产生的正应力有一个固定的有效区域,在该区域以外不会产生正应力。因此,在工程应用中,确定碳纤维布板的剥离长度可以减少维护工作,碳纤维布-钢筋混凝土在受弯曲和拉伸的共同作用下,可以在加载端有效应力区域内进行再加固,增加使用寿命。 展开更多
关键词 碳纤维增强复合材料(carbon fiber reinforced polymer CFRP)-混凝土 弯剪试验 界面粘结应力 弯剪破坏 本构模型
在线阅读 下载PDF
Experimental study and analysis on fatigue stiffness of RC beams strengthened with CFRP and steel plate 被引量:13
5
作者 卢亦焱 胡玲 +1 位作者 李杉 王康昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期701-707,共7页
The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati... The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results. 展开更多
关键词 carbon fiber reinforced polymer steel plate composite strengthening technique reinforced concrete beams fatigue stiffness
在线阅读 下载PDF
Synergistic effect of a new wedge-bond-type anchor for CFRP tendons
6
作者 谢桂华 刘荣桂 +2 位作者 陈蓓 李明君 石天罡 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2260-2266,共7页
In order to improve the anchoring force of anchors for carbon fiber reinforced polymer(CFRP) tendons further, a new wedge-bond-type anchor for CFRP tendons was developed. The increment in anchoring force induced by th... In order to improve the anchoring force of anchors for carbon fiber reinforced polymer(CFRP) tendons further, a new wedge-bond-type anchor for CFRP tendons was developed. The increment in anchoring force induced by the clamping segment of anchor was studied. Taking the deformation of all parts in clamping segment in the transverse direction into consideration, the calculation formula for the increment of anchoring force was proposed based on the linear elastic hypotheses. The proposed model is verified by experiments and conclusions are drawn that the anchoring force is influenced mainly by the inclination angle of clamping pieces, the length of clamping part and the thickness of bonding medium. Especially, the thickness of bonding medium should be lowered in design to improve the synergistic effect of anchors. 展开更多
关键词 carbon fiber reinforced polymer ANCHOR wedge-bond-type synergistic effect elastic mechanics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部