Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typ...Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typical defects.Meanwhile,tear is more obvious than burr,and more entrance tears emerge than exit tears.As one of the major causes of entrance and exit defects in CPOD,cutting forces were substaintially studied by contrast experiments.Then,the effect of cutting parameters on entrance and exit tear was qualitatively analyzed through a single factor test.Experiment results indicate that the variation of rotation speed has little influence on entrance and exit tear.Increasing tangential feed per tooth can enlarge entrance tear,but bring little effect on exit tear.By increasing axial feed pitch,the hole entrance and exit show severe tear.When revolution radius grows bigger and bigger,entrance and exit tear firstly decreases,and then increases.Finally,the models of tear and delamination during CPOD of CFRP were established,the formation mechanisms of entrance and exit defects were revealed,and the control strategies were accordingly put forward.展开更多
To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decay...To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed.展开更多
The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear a...The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity.展开更多
In order to overcome the shortcoming of space-borne rigid antenna reflector made of carbon fiber reinforced plastic(CFRP)skins with aluminum honeycomb sandwich(SAHS)structure,a new type of full CFRP skin plus rib(SPR)...In order to overcome the shortcoming of space-borne rigid antenna reflector made of carbon fiber reinforced plastic(CFRP)skins with aluminum honeycomb sandwich(SAHS)structure,a new type of full CFRP skin plus rib(SPR)structure ring-focused parabolic surface antenna reflector with the size of 2.5 m×1.9 m is designed.Under the condition that the original caliber,surface type,and interface remain unchanged,the main influence factors are designed and controlled.First,from the perspective of high stiffness,lightweight,and easy to form,a finite element simulation software is used to analyze and optimize the layout of the rib,the cross-sectional shape of the rib,the size of the rib,and the matching of the size and the coefficients of thermal expansion(CTEs)of the rib and the skin.Second,two structures are prepared by the autoclave molding process.Third,the weight and the surface precision root mean square(RMS)value are measured.The results show that the fundamental frequency of the SPR structure is 142.2 Hz,which is 3.5 Hz higher;the number of the new structural parts is reduced by 40%,and the forming process is greatly simplified.The total weight of the new structure is 11.9 kg,lighter 42.5%,indicating that the weight loss is obvious.The RMS value is 0.15 mm,which is slightly lower 0.01 mm but satisfies the accuracy requirement not greater than 0.3 mm.It is proved that the SPR structure reflector is a superior structure of the lightweight spaceborne antenna reflector.展开更多
基金supported in part by the Major Project of the Ministry of Science and Technology of China(No.2012ZX04003-031)the Innovation Project of Jiangsu Province(No.2016-05)
文摘Formation of entrance and exit defects in coarse pitch orbital drilling(CPOD)of carbon fiber reinforced plastic(CFRP)plates was investigated.Deep observation on entrance and exit morphology shows tear and burr are typical defects.Meanwhile,tear is more obvious than burr,and more entrance tears emerge than exit tears.As one of the major causes of entrance and exit defects in CPOD,cutting forces were substaintially studied by contrast experiments.Then,the effect of cutting parameters on entrance and exit tear was qualitatively analyzed through a single factor test.Experiment results indicate that the variation of rotation speed has little influence on entrance and exit tear.Increasing tangential feed per tooth can enlarge entrance tear,but bring little effect on exit tear.By increasing axial feed pitch,the hole entrance and exit show severe tear.When revolution radius grows bigger and bigger,entrance and exit tear firstly decreases,and then increases.Finally,the models of tear and delamination during CPOD of CFRP were established,the formation mechanisms of entrance and exit defects were revealed,and the control strategies were accordingly put forward.
文摘To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed.
基金supported by the Na⁃tional Natural Science Foundation of China(No.11972016)the Natural Science Foundation of the Jiangsu Higher Educa⁃tion Institutions of China(No.23KJD460005)Scientif⁃ic Research Foundation for the Introduction of Talent in Nan⁃jing Vocational University of Industry Technology(No.YK21-04-02).
文摘The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity.
文摘In order to overcome the shortcoming of space-borne rigid antenna reflector made of carbon fiber reinforced plastic(CFRP)skins with aluminum honeycomb sandwich(SAHS)structure,a new type of full CFRP skin plus rib(SPR)structure ring-focused parabolic surface antenna reflector with the size of 2.5 m×1.9 m is designed.Under the condition that the original caliber,surface type,and interface remain unchanged,the main influence factors are designed and controlled.First,from the perspective of high stiffness,lightweight,and easy to form,a finite element simulation software is used to analyze and optimize the layout of the rib,the cross-sectional shape of the rib,the size of the rib,and the matching of the size and the coefficients of thermal expansion(CTEs)of the rib and the skin.Second,two structures are prepared by the autoclave molding process.Third,the weight and the surface precision root mean square(RMS)value are measured.The results show that the fundamental frequency of the SPR structure is 142.2 Hz,which is 3.5 Hz higher;the number of the new structural parts is reduced by 40%,and the forming process is greatly simplified.The total weight of the new structure is 11.9 kg,lighter 42.5%,indicating that the weight loss is obvious.The RMS value is 0.15 mm,which is slightly lower 0.01 mm but satisfies the accuracy requirement not greater than 0.3 mm.It is proved that the SPR structure reflector is a superior structure of the lightweight spaceborne antenna reflector.