Massive MIMO systems offer a high spatial resolution that can drastically increase the spectral and/or energy efficiency by employing a large number of antennas at the base station(BS).In a distributed massive MIMO sy...Massive MIMO systems offer a high spatial resolution that can drastically increase the spectral and/or energy efficiency by employing a large number of antennas at the base station(BS).In a distributed massive MIMO system,the capacity of fiber backhaul that links base station and remote radio heads is usually limited,which becomes a bottleneck for realizing the potential performance gain of both downlink and uplink.To solve this problem,we propose a joint antenna selection and user scheduling which is able to achieve a large portion of the potential gain provided by the massive MIMO array with only limited backhaul capacity.Three sub-optimal iterative algorithms with the objective of sumrate maximization are proposed for the joint optimization of antenna selection and user scheduling,either based on greedy fashion or Frobenius-norm criteria.Convergence and complexity analysis are presented for the algorithms.The provided Monte Carlo simulations show that,one of our algorithms achieves a good tradeoff between complexity and performance and thus is especially fit for massive MIMO systems.展开更多
For Peer-to-Peer (P2P) streaming services in mobile networks, the selection of appropriate neighbour peers from candidate peers with demanding data is an important approach to improve Quality-of-Service (QoS). This pa...For Peer-to-Peer (P2P) streaming services in mobile networks, the selection of appropriate neighbour peers from candidate peers with demanding data is an important approach to improve Quality-of-Service (QoS). This paper proposes a novel Effective Capacity Peer Selection (ECPS) scheme based on effective capacity. In the ECPS scheme, the neighbour peer selection problem was modeled using the Multiple Attribute Decision Making (MADM) theory, which considered multiple factors of candidate peers, including Signal to Interference and Noise Ratio (SINR), residency time, power level, security, moving speed, and effective capacity. This model could increase the suitability of ECPS for wireless mobile environments. Then, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to solve the MADM problem and identify the preferred neighbour peers. Simulation results show that the ECPS scheme can improve the network throughput, reduce packet delay by about 82%, and almost double the packet delivery ratio of the mobile P2P streaming service.展开更多
For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the ch...For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained.On the optimal criterion of the channel capacity,the power allocation methods of both amplifying and forwarding(AF) and decoding and forwarding(DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity.The mode selection methods of single input single output(SISO) and single input multiple output(SIMO) models in the rectangular tunnel,through which the higher channel capacity can be obtained,were put forward as well.The theoretical analysis and simulation comparison show that,channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology;channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods,and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.展开更多
基金supported in part by National Natural Science Foundation of China No.61171080
文摘Massive MIMO systems offer a high spatial resolution that can drastically increase the spectral and/or energy efficiency by employing a large number of antennas at the base station(BS).In a distributed massive MIMO system,the capacity of fiber backhaul that links base station and remote radio heads is usually limited,which becomes a bottleneck for realizing the potential performance gain of both downlink and uplink.To solve this problem,we propose a joint antenna selection and user scheduling which is able to achieve a large portion of the potential gain provided by the massive MIMO array with only limited backhaul capacity.Three sub-optimal iterative algorithms with the objective of sumrate maximization are proposed for the joint optimization of antenna selection and user scheduling,either based on greedy fashion or Frobenius-norm criteria.Convergence and complexity analysis are presented for the algorithms.The provided Monte Carlo simulations show that,one of our algorithms achieves a good tradeoff between complexity and performance and thus is especially fit for massive MIMO systems.
基金supported in part by the National Natural Science Foundation of China under Grant No. 60902047the Fundamental Research Funds for the Central Universities under Grant No. BUPT2013RC0111
文摘For Peer-to-Peer (P2P) streaming services in mobile networks, the selection of appropriate neighbour peers from candidate peers with demanding data is an important approach to improve Quality-of-Service (QoS). This paper proposes a novel Effective Capacity Peer Selection (ECPS) scheme based on effective capacity. In the ECPS scheme, the neighbour peer selection problem was modeled using the Multiple Attribute Decision Making (MADM) theory, which considered multiple factors of candidate peers, including Signal to Interference and Noise Ratio (SINR), residency time, power level, security, moving speed, and effective capacity. This model could increase the suitability of ECPS for wireless mobile environments. Then, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to solve the MADM problem and identify the preferred neighbour peers. Simulation results show that the ECPS scheme can improve the network throughput, reduce packet delay by about 82%, and almost double the packet delivery ratio of the mobile P2P streaming service.
基金financial supports provided by the National Natural Science Foundation of China (No.51274202)the Fundamental Research Funds for the Central Universities (No.2013RC11)+3 种基金the Science and Technology Achievements Transformation Project of Jiangsu Province (No.BA2012068)the Natural Science Foundation of Jiangsu Province (Nos.BK20130199 and BK20131124)Ceeusro Prospective Joint Research Project of Jiangsu Province (No.BY2014028-01)Great Cultivating Special Project at China University of Mining and Technology (No.2014ZDPY16)
文摘For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained.On the optimal criterion of the channel capacity,the power allocation methods of both amplifying and forwarding(AF) and decoding and forwarding(DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity.The mode selection methods of single input single output(SISO) and single input multiple output(SIMO) models in the rectangular tunnel,through which the higher channel capacity can be obtained,were put forward as well.The theoretical analysis and simulation comparison show that,channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology;channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods,and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.