The future intelligent era that will be brought about by 5G technology can be well predicted.For example,the connection between humans and smart wearable devices will become increasingly more intimate.Flexible wearabl...The future intelligent era that will be brought about by 5G technology can be well predicted.For example,the connection between humans and smart wearable devices will become increasingly more intimate.Flexible wearable pressure sensors have received much attention as a part of this process.Nevertheless,there is a lack of complete and detailed discussion on the recent research status of capacitive pressure sensors composed of polymer composites.Therefore,this article will mainly discuss the key concepts,preparation methods and main performance of flexible wearable capacitive sensors.The concept of a processing“toolbox”is used to review the developmental status of the dielectric layer as revealed in highly cited literature from the past five years.The preparation methods are categorized into types of processing:primary and secondary.Using these categories,the preparation methods and structure of the dielectric layer are discussed.Their influence on the final capacitive sensing behavior is also addressed.Recent developments in the electrode layer are also systematically reviewed.Finally,the results of the above discussion are summarized and future development trends are discussed.展开更多
Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content mea...Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content measured by the oven dried method,and the calibration formula of sensor reading and mass moisture content is established.Results show that the sensor reading has a good linear relationship with the mass water content measured by the oven dried method,and has high precision. It can calibrate the mass moisture content of the data obtained from the moisture migration test in the soil column.展开更多
In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon tech...In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy.展开更多
For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar c...For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.展开更多
Continuous,real-time monitoring and identification of bacteria through detection of microbially emitted volatile molecules are highly sought albeit elusive goals.We introduce an artificial nose for sensing and disting...Continuous,real-time monitoring and identification of bacteria through detection of microbially emitted volatile molecules are highly sought albeit elusive goals.We introduce an artificial nose for sensing and distinguishing vapor molecules,based upon recording the capacitance of interdigitated electrodes(IDEs)coated with carbon dots(C-dots)exhibiting different polarities.Exposure of the C-dot-IDEs to volatile molecules induced rapid capacitance changes that were intimately dependent upon the polarities of both gas molecules and the electrode-deposited C-dots.We deciphered the mechanism of capacitance transformations,specifically substitution of electrode-adsorbed water by gas molecules,with concomitant changes in capacitance related to both the polarity and dielectric constants of the vapor molecules tested.The C-dot-IDE gas sensor exhibited excellent selectivity,aided by application of machine learning algorithms.The capacitive C-dot-IDE sensor was employed to continuously monitor microbial proliferation,discriminating among bacteria through detection of distinctive“volatile compound fingerprint”for each bacterial species.The C-dot-IDE platform is robust,reusable,readily assembled from inexpensive building blocks and constitutes a versatile and powerful vehicle for gas sensing in general,bacterial monitoring in particular.展开更多
基金The authors gratefully acknowledge the financial support of this work by National Natural Science Foundation of China(51773139,51922071).
文摘The future intelligent era that will be brought about by 5G technology can be well predicted.For example,the connection between humans and smart wearable devices will become increasingly more intimate.Flexible wearable pressure sensors have received much attention as a part of this process.Nevertheless,there is a lack of complete and detailed discussion on the recent research status of capacitive pressure sensors composed of polymer composites.Therefore,this article will mainly discuss the key concepts,preparation methods and main performance of flexible wearable capacitive sensors.The concept of a processing“toolbox”is used to review the developmental status of the dielectric layer as revealed in highly cited literature from the past five years.The preparation methods are categorized into types of processing:primary and secondary.Using these categories,the preparation methods and structure of the dielectric layer are discussed.Their influence on the final capacitive sensing behavior is also addressed.Recent developments in the electrode layer are also systematically reviewed.Finally,the results of the above discussion are summarized and future development trends are discussed.
文摘Soil properties and water content vary from place to place. The calibration method based on capacitive soil moisture and humidity sensor is carried out. The sensor readings are compared with the mass water content measured by the oven dried method,and the calibration formula of sensor reading and mass moisture content is established.Results show that the sensor reading has a good linear relationship with the mass water content measured by the oven dried method,and has high precision. It can calibrate the mass moisture content of the data obtained from the moisture migration test in the soil column.
基金supported by the Nano Special Projects of Shanghai Science and Technology Commission of China(Grant No.11nm0560800)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11104284)
文摘In this paper, a micro capacitive sensor with nanometer resolution is presented for ultra-precision measurement of micro components, which is fabricated by the MEMS (micro electromechanical systems) non-silicon technique. Based on the sensor, a micro capacitive tactile probe is constructed by stylus assembly and packaging design for dimension metrology on micro/nano scale, in which a data acquiring system is developed with AD7747. Some measurements of the micro capacitive tactile probe are performed on a nano positioning and measuring machine (NMM). The measurement results show good linearity and hysteresis with a range of 11.6 μm and resolution of better than 5 nm. Hence, the micro capacitive tactile probe can be integrated on NMM to realize measurement of micro structures with nanometer accuracy.
基金supported by the Central University Basic Research Professional Expenses Special Foundation of Harbin Engineering University (Grant No. HEUCFL10101109)
文摘For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting method (LSFM) to reconstruct the wood moisture content (WMC) from the data measured with a planar capacitance sensor. A boundary element method (BEM) was used to compute the relationship between capacitance and the dielectric constant. A functional relationship between MC and the dielectric constant was identified by LSFM. The agreement of this final computation result with the experimental data indicates that this method can be used to estimate the WMC quickly and effectively with engineering analysis. Compared with popular statistical methods, a large number of experiments are avoided, some costs of testing are reduced and the efficiency of testing is enhanced.
基金We are grateful to Dr.Natalya Froumin(XPS),Dr.Yanna Milionshi(TGA),Dr.Jurgen Jopp(AFM),Dr.Igor Mokmanov for assistance with GC-MS experiments and Mrs.Galia Strinkovski for mentoring.
文摘Continuous,real-time monitoring and identification of bacteria through detection of microbially emitted volatile molecules are highly sought albeit elusive goals.We introduce an artificial nose for sensing and distinguishing vapor molecules,based upon recording the capacitance of interdigitated electrodes(IDEs)coated with carbon dots(C-dots)exhibiting different polarities.Exposure of the C-dot-IDEs to volatile molecules induced rapid capacitance changes that were intimately dependent upon the polarities of both gas molecules and the electrode-deposited C-dots.We deciphered the mechanism of capacitance transformations,specifically substitution of electrode-adsorbed water by gas molecules,with concomitant changes in capacitance related to both the polarity and dielectric constants of the vapor molecules tested.The C-dot-IDE gas sensor exhibited excellent selectivity,aided by application of machine learning algorithms.The capacitive C-dot-IDE sensor was employed to continuously monitor microbial proliferation,discriminating among bacteria through detection of distinctive“volatile compound fingerprint”for each bacterial species.The C-dot-IDE platform is robust,reusable,readily assembled from inexpensive building blocks and constitutes a versatile and powerful vehicle for gas sensing in general,bacterial monitoring in particular.