According to Hertz theory, the difference of contact stress for non-circular gears and equivalent gears is compared in the paper, a calculating method of contact stress for non-circular gears by using equivalent gears...According to Hertz theory, the difference of contact stress for non-circular gears and equivalent gears is compared in the paper, a calculating method of contact stress for non-circular gears by using equivalent gears is researched, and computing formulas of power and rotation speed for equivalent gears are deduced. A numerical simulation of contact stress for non-circular gears has also been conducted based on the finite element method. By the comparison of fitting curves, the feasibility of using equivalent gears instead of non-circular gears to calculate the contact stress is testified.展开更多
A method of calculating the safety profile on the HT-7 tokamak has been described in this paper. It is derived from Maxwell's equations, among which we-mainly use .two of them: one is the magnetic field diffusion ...A method of calculating the safety profile on the HT-7 tokamak has been described in this paper. It is derived from Maxwell's equations, among which we-mainly use .two of them: one is the magnetic field diffusion equation, and the other is Ampere's Law. This method can be also used to evaluate the safety factor on other devices with a circular cross sections. It is helpful to the study of the plasma MHD behavior on the HT-7 tokamak.展开更多
Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with...Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.展开更多
A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary jud...A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary judgment matrixes given by a decider group whose members have various weights, the expert's information was aggregated first by means of simple weight average(SWA) method and Bonissone calculational method. Hence a matrix including all the experts' preference information was got. Then the matrix' column members were added up and the fuzzy evaluation values of the alternatives were got. Lastly, the Hausdorff metric distance and fuzzy compromise decision approach were used to rank the fuzzy evaluation values and then the ranking values of all the alternatives were got. Because exact numbers and triangular fuzzy numbers could all be transformed into trapezoidal fuzzy numbers, the method developed can rank complementary judgment matrixes with trapezoidal fuzzy numbers, triangular fuzzy numbers and exact numbers as well. An illustrative example is also given to verify the developed method and to demonstrate its feasibility and practicality.展开更多
The Dash Stop flight at the extreme condition is the primary interest of this study. This paper describes some research on the flight characteristics of helicopter in Dash Stop. A set of equations which govern the Das...The Dash Stop flight at the extreme condition is the primary interest of this study. This paper describes some research on the flight characteristics of helicopter in Dash Stop. A set of equations which govern the Dash Stop is developed. A method which determines the acceleration and deceleration is proposed. Formulas are then developed which relate the aircraft angular rates and attitudes to flight speed, angle of attack and acceleration or deceleration. Finally the DOLPHIN helicopter is taken as an example to calculate its acceleration/deceleration capability, pilot control and aircraft attitudes in space. It is found that the results are reasonable.展开更多
A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especia...A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.展开更多
We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods includi...We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCIq-Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF2 related icMRCI+Q/aug-cc-pVTZ level. The ab initio results will and dynamics of electronic states of CF2 radical. to the lowest dissociation limit are calculated at the further increase our understanding of the structures展开更多
Ab initio calculations are performed on the electronic, structural, elastic and optical properties of the cubic per- ovskite KCdF3. Tile Kohn Sham equations are solved by applying the full potential linearized augment...Ab initio calculations are performed on the electronic, structural, elastic and optical properties of the cubic per- ovskite KCdF3. Tile Kohn Sham equations are solved by applying the full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation effects are included through the local density approximation (LDA ), generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) exchange potential The calculated lattice constant is in good agreement with the experimental result. The elastic properties such as elastic constants, anisotropy factor, shear modulus, Young's modulus and Poisson's ratio are calculated. KCdF3 is ductile and elastically anisotropic. The calculations of the electronic band structure, density of states (DOS) and charge density show that this compound has an indirect energy band gap (M-F) with a mixed ionic and covalent bonding. The contribution of the different bands is analyzed from the total and partial density of states curves. Optical response of the dielectric functions, optical reflectivity, absorption coefficient, real part of optical conductivity, refractive index, extinction coefficient and electron energy loss, are presented for the energy range of O-40eV. The compound KCdF3 can be used for high-frequency optical and optoelectronic devices.展开更多
A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missi...A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missing and overflowing".A sensitive heat capacity model is introduced through which the calculation errors are analyzed.Then the equation using the self-adjusted time step is presented and solved using finite differences.Through this equation,the time needed for a space cell to reach the phase change point temperature is calculated.Using this time allows the time step to be adjusted so that errors caused by "phase change missing and overflowing" are successfully eliminated.Above all,the obvious features of this method are an accelerated rate for adjusting the time step and simplifing the computations.An actual example proves that this method can accurately calculate the temperature fields during soil freezing and thawing.It is an improvement over traditional methods and can be widely used on complicated multi-dimensional phase change problems.展开更多
The prospect ofα-Ga2O3 in optical and electrical devices application is fascinating.In order to obtain better performance,Ge and F elements with similar electronegativity and atomic size are selected as dopants.Based...The prospect ofα-Ga2O3 in optical and electrical devices application is fascinating.In order to obtain better performance,Ge and F elements with similar electronegativity and atomic size are selected as dopants.Based on density functional theory(DFT),we systematically research the electronic structure and optical properties of dopedα-Ga2O3 by GGA+U calculation method.The results show that Ge atoms and F atoms are effective n-type dopants.For Ge-dopedα-Ga2O3,it is probably obtained under O-poor conditions.However,for F-dopedα-Ga2O3,it is probably obtained under O-rich conditions.The doping system of F element is more stable due to the lower formation energy.In this investigation,it is found that two kinds of doping can reduce theα-Ga2O3 band gap and improve the conductivity.What is more,it is observed that the absorption edge after doping has a blue shift and causes certain absorption effect on the visible region.Through the whole scale of comparison,Ge doping is more suitable for the application of transmittance materials,yet F doping is more appropriate for the application of deep ultraviolet devices.We expect that our research can provide guidance and reference for preparation ofα-Ga2O3 thin films and photoelectric devices.展开更多
By building a tunnel model with a semi-circular crown, the asymmetric rock pressure applied to the shallow tunnel in strata with inclined ground surface is analyzed. Formulae, which not only include the parameters .re...By building a tunnel model with a semi-circular crown, the asymmetric rock pressure applied to the shallow tunnel in strata with inclined ground surface is analyzed. Formulae, which not only include the parameters .related to both tunnel structure and surrounding rock mass, but the overburden depth, are developed. The computation for four tunnel models show that the method presented is feasible and convenient. Furthermore, the influence of the overburden depth on the rock pressure is elaborated, and the criterion to identify the deep or shallow tunnels is formulated as well.展开更多
The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established bas...The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established based on mesoscopic mechanical theory.The constitutive relationship of different types of pore microstructure deformation was studied with Eshelby equivalent medium theory,and the effects of pore microstructure on pore volume compressibility under elastic deformation conditions of single and multiple pores of a single type and mixed types of pores were investigated.The results showed that the pore volume compressibility coefficient of digital core is closely related with porosity,pore aspect ratio and volumetric proportions of different types of pores.(1)The compressibility coefficient of prolate ellipsoidal pore is positively correlated with the pore aspect ratio,while that of oblate ellipsoidal pore is negatively correlated with the pore aspect ratio.(2)At the same mean value of pore aspect ratio satisfying Gaussian distribution,the more concentrated the range of pore aspect ratio,the higher the compressibility coefficient of both prolate and oblate ellipsoidal pores will be,and the larger the deformation under the same stress condition.(3)The pore compressibility coefficient increases with porosity.(4)At a constant porosity value,the higher the proportion of oblate ellipsoidal and spherical pores in the rock,the more easier for the rock to deform,and the higher the compressibility coefficient of the rock is,while the higher the proportion of prolate ellipsoidal pores in the rock,the more difficult it is for rock to deform,and the lower the compressibility coefficient of the rock is.By calculating pore compressibility coefficient of ten classical digital rock samples,the presented analytical elliptical-pore model based on real pore structure of digital rocks can be applied to calculation of pore volume compressibility coefficient of digital rock sample.展开更多
The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation....The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys.展开更多
文摘According to Hertz theory, the difference of contact stress for non-circular gears and equivalent gears is compared in the paper, a calculating method of contact stress for non-circular gears by using equivalent gears is researched, and computing formulas of power and rotation speed for equivalent gears are deduced. A numerical simulation of contact stress for non-circular gears has also been conducted based on the finite element method. By the comparison of fitting curves, the feasibility of using equivalent gears instead of non-circular gears to calculate the contact stress is testified.
文摘A method of calculating the safety profile on the HT-7 tokamak has been described in this paper. It is derived from Maxwell's equations, among which we-mainly use .two of them: one is the magnetic field diffusion equation, and the other is Ampere's Law. This method can be also used to evaluate the safety factor on other devices with a circular cross sections. It is helpful to the study of the plasma MHD behavior on the HT-7 tokamak.
文摘Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.
文摘A method for ranking complementary judgment matrixes with traspezoidal fuzzy numbers based on Hausdorff metric distance and fuzzy compromise decision approach is proposed. With regard to fuzzy number complementary judgment matrixes given by a decider group whose members have various weights, the expert's information was aggregated first by means of simple weight average(SWA) method and Bonissone calculational method. Hence a matrix including all the experts' preference information was got. Then the matrix' column members were added up and the fuzzy evaluation values of the alternatives were got. Lastly, the Hausdorff metric distance and fuzzy compromise decision approach were used to rank the fuzzy evaluation values and then the ranking values of all the alternatives were got. Because exact numbers and triangular fuzzy numbers could all be transformed into trapezoidal fuzzy numbers, the method developed can rank complementary judgment matrixes with trapezoidal fuzzy numbers, triangular fuzzy numbers and exact numbers as well. An illustrative example is also given to verify the developed method and to demonstrate its feasibility and practicality.
文摘The Dash Stop flight at the extreme condition is the primary interest of this study. This paper describes some research on the flight characteristics of helicopter in Dash Stop. A set of equations which govern the Dash Stop is developed. A method which determines the acceleration and deceleration is proposed. Formulas are then developed which relate the aircraft angular rates and attitudes to flight speed, angle of attack and acceleration or deceleration. Finally the DOLPHIN helicopter is taken as an example to calculate its acceleration/deceleration capability, pilot control and aircraft attitudes in space. It is found that the results are reasonable.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51137004,61427806 and 51577184the Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507
文摘A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.
基金Supported by the 2014 Postdoctoral Sustentation Fund of Qingdao under Grant No 01020120517the Natural Science Foundation of Shandong Province under Grant No ZR2014AP001+1 种基金the National Natural Science Foundation of China under Grant No11447226the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents under Grant No 2015RCJJ015
文摘We investigate the geometries and energies of seven electronic states X-1A1, A1B1, a-3B1, B-1A2,b-3A2, C1B2 and c-3B2 of CF2 carbene using internally contracted multireference configuration interaction methods including Davidson correction (icMRCIq-Q) with different basis sets aug-cc-pVXZ (X=T, Q, 5). For the first time, the potential energy curves of electronic states of CF2 related icMRCI+Q/aug-cc-pVTZ level. The ab initio results will and dynamics of electronic states of CF2 radical. to the lowest dissociation limit are calculated at the further increase our understanding of the structures
基金Supported by UGC,New Delhi through UGC-BSR(JRF)fellowships
文摘Ab initio calculations are performed on the electronic, structural, elastic and optical properties of the cubic per- ovskite KCdF3. Tile Kohn Sham equations are solved by applying the full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation effects are included through the local density approximation (LDA ), generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) exchange potential The calculated lattice constant is in good agreement with the experimental result. The elastic properties such as elastic constants, anisotropy factor, shear modulus, Young's modulus and Poisson's ratio are calculated. KCdF3 is ductile and elastically anisotropic. The calculations of the electronic band structure, density of states (DOS) and charge density show that this compound has an indirect energy band gap (M-F) with a mixed ionic and covalent bonding. The contribution of the different bands is analyzed from the total and partial density of states curves. Optical response of the dielectric functions, optical reflectivity, absorption coefficient, real part of optical conductivity, refractive index, extinction coefficient and electron energy loss, are presented for the energy range of O-40eV. The compound KCdF3 can be used for high-frequency optical and optoelectronic devices.
基金Project 2006G1662-00 supported by the Key Science and Technology Project of Heilongjiang Province
文摘A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missing and overflowing".A sensitive heat capacity model is introduced through which the calculation errors are analyzed.Then the equation using the self-adjusted time step is presented and solved using finite differences.Through this equation,the time needed for a space cell to reach the phase change point temperature is calculated.Using this time allows the time step to be adjusted so that errors caused by "phase change missing and overflowing" are successfully eliminated.Above all,the obvious features of this method are an accelerated rate for adjusting the time step and simplifing the computations.An actual example proves that this method can accurately calculate the temperature fields during soil freezing and thawing.It is an improvement over traditional methods and can be widely used on complicated multi-dimensional phase change problems.
基金Project supported by the National Natural Science Foundation of China(Grant No.51302215)the Natural Science Basic Research Program of Shaanxi Province,China(Grant Nos.2018JQ6084 and 2019JQ-860).
文摘The prospect ofα-Ga2O3 in optical and electrical devices application is fascinating.In order to obtain better performance,Ge and F elements with similar electronegativity and atomic size are selected as dopants.Based on density functional theory(DFT),we systematically research the electronic structure and optical properties of dopedα-Ga2O3 by GGA+U calculation method.The results show that Ge atoms and F atoms are effective n-type dopants.For Ge-dopedα-Ga2O3,it is probably obtained under O-poor conditions.However,for F-dopedα-Ga2O3,it is probably obtained under O-rich conditions.The doping system of F element is more stable due to the lower formation energy.In this investigation,it is found that two kinds of doping can reduce theα-Ga2O3 band gap and improve the conductivity.What is more,it is observed that the absorption edge after doping has a blue shift and causes certain absorption effect on the visible region.Through the whole scale of comparison,Ge doping is more suitable for the application of transmittance materials,yet F doping is more appropriate for the application of deep ultraviolet devices.We expect that our research can provide guidance and reference for preparation ofα-Ga2O3 thin films and photoelectric devices.
文摘By building a tunnel model with a semi-circular crown, the asymmetric rock pressure applied to the shallow tunnel in strata with inclined ground surface is analyzed. Formulae, which not only include the parameters .related to both tunnel structure and surrounding rock mass, but the overburden depth, are developed. The computation for four tunnel models show that the method presented is feasible and convenient. Furthermore, the influence of the overburden depth on the rock pressure is elaborated, and the criterion to identify the deep or shallow tunnels is formulated as well.
基金Supported by the National Natural Science Foundation of China(51474224)The Shenzhen Peacock Plan(KQTD2017033114582189)The Shenzhen Science and Technology Innovation Committee(JCYJ20170817152743178)
文摘The real pores in digital cores were simplified into three abstractive types,including prolate ellipsoids,oblate ellipsoids and spheroids.The three-dimensional spheroidal-pore model of digital core was established based on mesoscopic mechanical theory.The constitutive relationship of different types of pore microstructure deformation was studied with Eshelby equivalent medium theory,and the effects of pore microstructure on pore volume compressibility under elastic deformation conditions of single and multiple pores of a single type and mixed types of pores were investigated.The results showed that the pore volume compressibility coefficient of digital core is closely related with porosity,pore aspect ratio and volumetric proportions of different types of pores.(1)The compressibility coefficient of prolate ellipsoidal pore is positively correlated with the pore aspect ratio,while that of oblate ellipsoidal pore is negatively correlated with the pore aspect ratio.(2)At the same mean value of pore aspect ratio satisfying Gaussian distribution,the more concentrated the range of pore aspect ratio,the higher the compressibility coefficient of both prolate and oblate ellipsoidal pores will be,and the larger the deformation under the same stress condition.(3)The pore compressibility coefficient increases with porosity.(4)At a constant porosity value,the higher the proportion of oblate ellipsoidal and spherical pores in the rock,the more easier for the rock to deform,and the higher the compressibility coefficient of the rock is,while the higher the proportion of prolate ellipsoidal pores in the rock,the more difficult it is for rock to deform,and the lower the compressibility coefficient of the rock is.By calculating pore compressibility coefficient of ten classical digital rock samples,the presented analytical elliptical-pore model based on real pore structure of digital rocks can be applied to calculation of pore volume compressibility coefficient of digital rock sample.
文摘The zincblende ternary alloys Tl_xGa_(1-x) As(0 〈 x 〈 1) are studied by numerical analysis based on the plane wave pseudopotential method within the density functional theory and the local density approximation. To model the alloys,16-atom supercells with the 2 × 2 × 2 dimensions are used and the dependency of the lattice parameter, bulk modulus,electronic structure, energy band gap, and optical bowing on the concentration x are analyzed. The results indicate that the ternary Tl_xGa_(1-x) As alloys have an average band gap bowing parameter of 4.48 eV for semiconductor alloys and 2.412 eV for semimetals. It is found that the band gap bowing strongly depends on composition and alloying a small Tl content with GaAs produces important modifications in the band structures of the alloys.