The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total ...The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature. The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5 zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking.展开更多
The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 n...The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 nm.The effects of calcination temperature on the catalyst surface and micro structure properties as well as catalytic performance for the oxidation of carbon monoxide were also studied.All catalysts were characterized by N2 adsorption-desorption,XRD,XPS,FTIR,H2-TPR and O2-TPD.It was found that the properties and crystal size of cobalt-containing species strongly depended on the pore size of silica carrier.While the silica pore size increased from 7.7 to 27.0 nm,the Co3O4 crystal size increased from 8.5 to 13.5 nm.Moreover,it was demonstrated that if the spinel crystal structure of Co3O4 was obtained at a calcination temperature as low as 150℃,the catalyst sample would have a high Co3O4 surface dispersion and an increase of surface active species,and thus exhibit a high activity for the oxidation of carbon monoxide.展开更多
SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by me...SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by means of ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM), CO chemisorption, H2 and NH3 temperature-programmed desorptions (H2-TPD and NH3-TPD). Their catalytic performances for the deoxygena- tion of methyl laurate were tested in a fixed-bed reactor. When the precursors were calcined at 400 and 500 ℃, respectively, NiMoP2 phase could be formed apart from Ni2P and MoP phases in the prepared C400 and C500 catalysts. However, when the precursors were calcined at 600, 700 and 800 ℃, respectively, only Ni2P and MoP phases could be detected in the prepared C600, C700 and C800 catalysts. Also, in C400, C500 and C600 catalysts, Mo atoms were found to be entered in the lattice of Ni2P phase, but the entering extent became less with the increase of calcination temperature. As the calcination temperature of the precursor increased, the interaction between Ni and Mo in the prepared catalysts decreased, and the phosphide crystallite size tended to increase, subsequently leading to the decrease in the surface metal site density and the acid amount. C600 catalyst showed the highest activity among the tested ones for the deoxygenation of methyl laurate. As the calcination temperature of the precursor increased, the selectivity to C12 hydrocarbons decreased while the selectivity to C11 hydrocarbons tended to increase. This can be mainly attributed to the decreased Ni-Mo interaction and the increased phosphide particle size. In sum, the structure and performance of Ni-Mo bimetallic phosphide catalyst can be tuned by the calcination temperature of precursor.展开更多
CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcinat...CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcination in Natmosphere. The samples were characterized by various means such as nitrogen adsorption/desorption, X-ray diffraction(XRD), Htemperature-programmed reduction(H-TPR),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). Results showed that the modified catalyst had the mesoporous structure, comparatively higher amount of surface oxygen and larger oxygen vacancies than others. As a result of the structure and surface composition merits, a high methane combustion conversion(50%) could be obtained at a low temperature of 262 °C for the modified CoO/CeOcomposites catalysts. The experimental results demonstrated that ultrasonic impregnation treatment combined with the Nthermal treatment prior to calcination in air had a promising application for preparation of CoO/CeOcomposites catalysts for low-temperature catalytic combustion of methane.展开更多
The desulfurization efficiency and mechanism of the calcination of petroleum coke in ammonia atmosphere at lower than 1000 ℃ were investigated through a series of conditional experiments and comparison with other gas...The desulfurization efficiency and mechanism of the calcination of petroleum coke in ammonia atmosphere at lower than 1000 ℃ were investigated through a series of conditional experiments and comparison with other gases such as H_2. The topics of efficiency and reaction mechanism are usually discussed through investigation by means of the Fourier transform infrared spectroscopy(FT-IR), the Brunauer-Emmett-Teller(BET) technique, and the thermogravimetry coupled with the mass spectrometry(TG-MS). Results showed that in addition to H_2, ammonia not only could retain a high desulfurization rate but could also reduce coke loss during the desulfurization process of petroleum coke. The best desulfurization conditions covered a petroleum coke particle size of less than 0.1 mm, a calcination temperature of 800 ℃ in ammonia atmosphere with a flow rate of 10 L/h, and a heating duration of more than 120 min. Ammonia decomposition, H_2 generation, decline in the activation energy of the carbon–sulfur bonds, and petroleum coke with a largest specific surface area at 800 ℃ are the key goals of desulfurization studied thereby. As proved by TG-MS analysis, given a large quantity of H_2, ammonia can be decomposed at the same temperature to completely come into contact with the sulfur species in petroleum coke to generate H_2S.展开更多
In order to develop high-efficiency and low-cost catalyst for the slurry-phase hydrocracking of vacuum residue(VR),the catalyst supported on natural rectorite was prepared,and the effect of calcination modification of...In order to develop high-efficiency and low-cost catalyst for the slurry-phase hydrocracking of vacuum residue(VR),the catalyst supported on natural rectorite was prepared,and the effect of calcination modification of rectorite on the catalyst properties and performance was investigated.The support of rectorite and catalyst were characterized by XRD,FTIR,Py-FTIR,H_(2)-TPR and XPS to examine their structures and properties.The comparative reaction results show that VR conversions for the catalysts supported on calcined rectorite were similar with that on raw rectorite,possibly due to the VR cracking reaction controlled by the thermal cracking following free radical mechanism because of few acid sites observed on the catalysts surface.However,the yields of naphtha and middle distillates for the various catalysts were obviously different,and increased following as Rec-Mo(40.4 wt%)展开更多
TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The ef...TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The effects of support calcination temperature of CoMo/TiOz- NTs catalysts on their catalytic performance were investigated for selective hydrodesulfurization (HDS). The samples were characterized by means of the scanning electron microscopy (SEM), the transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy and H2 temperature-programmed reduction (Hz-TPR). The experimental results revealed that TiOz-NTs support calcined under 500℃ can maintain the nanotubular structure with higher surface area and pore volume. Meanwhile, the obtained supported CoMo/TiO2-NTs catalysts exhibited weak metal-support interaction, more octahedral Mo6+ species and high catalytic performance in selective HDS.展开更多
Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried ...Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried out over coral reef-like Ni/Al2O3 catalysts in a continuous flow type fixed-bed reactor.The structure and properties of the fresh and used catalysts were studied by SEM,N2 adsorption-desorption,XRD,H2-TPR,O2-TPO,TG and ICP-AES techniques.The results showed that the coral reef-like Ni/Al2O3 catalysts exhibited better activity than the conventional Ni/Al2O3-H2O catalysts.The activities of coral reef-like catalysts were in the order of Ni/Al2O3-673Ni/Al2O3-573Ni/Al2O3- 473Ni/Al2O3-773.Ni/Al2O3-673-EG catalyst showed not only good activity and improved stability but also superior resistance to carbon deposition,sintering,and Ni loss.Under the reaction conditions of CO/H2(molar ratio)=1:3,593 K,atmospheric pressure and a GHSV of 2500 h-1,CH4 selectivity was 84.7%,and the CO conversion reached 98.2%.展开更多
In this study,selective dealumination of Beta zeolites was performed through partially removing the templating agent in Beta zeolites by calcination and then removing the aluminum on the external surface of Beta zeoli...In this study,selective dealumination of Beta zeolites was performed through partially removing the templating agent in Beta zeolites by calcination and then removing the aluminum on the external surface of Beta zeolites with acid treatment.Hydrocracking catalysts were prepared by loading WO_(3)onto these dealuminated Beta zeolites.It was shown that the surface SiO_(2)/Al_(2)O_(3)of selectively dealuminated Beta zeolites was higher than that of conventionally dealuminated samples for the same bulk SiO_(2)/Al_(2)O_(3),and the hydrogenation activity of the catalyst of the selectively dealuminated Beta zeolites was lower than that of conventionally dealuminated Beta zeolites.The experimental results for tetralin hydrocracking to BTX showed that the catalysts based on the selectively dealuminated Beta zeolites had higher BTX selectivity and lower coke formation rate than that the catalysts based on the conventionally dealuminated Beta zeolites.展开更多
A series of x (Fe,Ni)/Al2O3 catalysts (x = 2-12 wt%) were prepared using incipient wetness method and studied for the conversion of synthesis gas to light olefins.6 wt%(Fe,Ni)/Al2O3 catalyst was found to be the ...A series of x (Fe,Ni)/Al2O3 catalysts (x = 2-12 wt%) were prepared using incipient wetness method and studied for the conversion of synthesis gas to light olefins.6 wt%(Fe,Ni)/Al2O3 catalyst was found to be the optimal catalyst for the production of C2-C4 olefins.The effects of calcination behaviors and operational conditions on the catalytic performance of the optimal catalyst were investigated.The best operational conditions were molar feed ratio H2/CO = 2/1,T = 260 ℃,gas hourly space velocity (GHSV) = 2600 h^-1 and the pressure of 3 bar.Character-izations of both precursors and catalysts were carried out using X-ray diffraction (XRD),temperature-programmed reduction (TPR),scanning electron microscopy (SEM),N2-adsorption-desorption measurement,thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC).展开更多
Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the rela...Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the relationship between the cycle stability and thermal stability of nickel-rich cathode materials have been systematically studied through five different calcination temperatures of Li[NiCoMn]O(NCM83) cathode materials. The research results confirm that the cycle stability and thermal safety of nickel-rich cathode materials do not necessarily show a positive correlation. Actually, with the calcination temperature elevated, the thermal stability of the NCM83 is enhanced, while the cycle stability is degraded. This opposite correlation is not commonly reported in previous literatures. In this work, systematical characterizations demonstrate that under the experimental conditions, the capacity retention of NCM83 is mainly determined by the Li/Ni cation disorder and H2-H3 irreversible phase transition,which is optimal at lower calcination temperature. Meanwhile, the thermal stability is mainly impacted by thermal expansion characteristics and interfacial stability of cathode material, and it is dramatically improved by the mechanical strength of the secondary particles reinforced at high calcinated temperature. This study provides some new insights on understanding and designing of the high-energy cathode materials with long cycle-life and superior safety.展开更多
The physic-chemical properties of LaFe0.95Pd0.05O3 perovskites were strongly dependent on the temperature of calcination. Most of the organic substances and inorganic impurities were readily removed at 723 K but singl...The physic-chemical properties of LaFe0.95Pd0.05O3 perovskites were strongly dependent on the temperature of calcination. Most of the organic substances and inorganic impurities were readily removed at 723 K but single-phase and well crystallized perovskite structure was formed at 873 K. With further raising the calcination temperature, the crystallite size of LaFe0.95Pd0.05O3 increased considerably. The LaFe0.95Pd0.05O3 sample that calcined at 1073 K showed only comparable activity as the reference LaFeO3 catalyst, in particular below 923 K, but pre-treatment with the reaction gas at 1223 K resulted in significantly enhanced activity due to the generation of active PdO species on the surface. The hysteresis feature upon heating-cooling cycle further confirmed the strong interaction between Pd and LaFeO3 in the perovskite structure.展开更多
A series of graphitic-C3N4/ZnS(g-C3N4/ZnS) supercapacitor electrode materials have been prepared via a one-step calcination process of zinc acetate/thiourea with different mass ratios under nitrogen atmosphere. The ...A series of graphitic-C3N4/ZnS(g-C3N4/ZnS) supercapacitor electrode materials have been prepared via a one-step calcination process of zinc acetate/thiourea with different mass ratios under nitrogen atmosphere. The optimized g-C3N4/ZnS composite shows a highest specific capacitance of 497.7 F/g at 1 A/g and good cycling stability with capacitance retention of 80.4% at 5 A/g after 1000 cycles. Moreover, gC3N4/ZnS composites display an improved supercapacitor performance in terms of specific capacitance compared to the pure g-C3N4 and ZnS. In addition, our designed symmetric supercapacitor device based on g-C3N4/ZnS composite electrodes can exhibit an energy density of 10.4 Wh/kg at a power density of 187.3 W/kg. As a result, g-C3N4/ZnS composites are expected to be a prospective material for supercapacitors and other energy storage applications.展开更多
Electrochemical performances of LiCoO_2 as a candidate material for supercapacitor are systematically investigated. LiCoO_2 nanomaterials are synthesized via hydrothermal reaction with consequent calcination process. ...Electrochemical performances of LiCoO_2 as a candidate material for supercapacitor are systematically investigated. LiCoO_2 nanomaterials are synthesized via hydrothermal reaction with consequent calcination process. And the particle size increases as the calcination temperature rises. LCO-650 sample with the largest particle size displays the maximum capacitances of 817.5 F·g^-1 with the most outstanding capacity retention rate of 96.8% after 2000 cycles. It is shown that large particle size is beneficial to the electrochemical and structural stability of LiCoO_2 materials. We speculate that the micron-sized waste LiCoO_2 materials have great potential for supercapacitor application. It may provide a novel recovered approach for spent LIBs and effectively relieve the burdens on the resource waste and environment pollution.展开更多
NH4Y zeolite was prepared through ion-exchange of NaY zeolite with an ammonium salt. Then LaY zeolite was obtained through a secondary ion-exchange of NHaY zeolite with a rare earth salt solution followed by calcinati...NH4Y zeolite was prepared through ion-exchange of NaY zeolite with an ammonium salt. Then LaY zeolite was obtained through a secondary ion-exchange of NHaY zeolite with a rare earth salt solution followed by calcination of the zeolite product. Dynamic adsorptive desulfurization of naphtha was conducted in the presence of the modified LaY zeolite, and the sulfur content of the treated naphtha samples was analyzed by microcoulometry. The test results showed that under dynamic conditions the LaY zeolite prepared through secondary ion-exchange of NH4Y zeolite, which was prepared using 1.0 mol/L ammonium salt, with the rare earth salt exhibited a better desulfurization efficiency. Furthermore, the LaY zeolite achieved a best desulfurization effect at an adsorption temperature of 45 ℃ and an adsorbent/oil ratio of 1:2.展开更多
In this work,a novel process consisting of calcining-slaking followed by gravity separation for the enrichment of niobium(Nb)and titanium(Ti)from carbonatite pyrochlore ore was proposed,validated and compared with the...In this work,a novel process consisting of calcining-slaking followed by gravity separation for the enrichment of niobium(Nb)and titanium(Ti)from carbonatite pyrochlore ore was proposed,validated and compared with the current mainstream flotation method.During calcining of the pyrochlore ore,within which the carbonates were transformed into lime.Subsequently,when the calcined ore was slaked,lime was transformed into hydroxide with fine particles which were amenable to gravity separation.After calcining at 900℃for 60 min,slaking at 90℃for 10 min with a liquid–solid ratio of 3:1(mL/g),approximately 40%of tailings can be removed by gravity separation,the recoveries of Nb and Ti were 94.7%and 91.0%,and the enrichment ratios of Nb and Ti were 1.61 and 1.43,respectively.The new approach exhibits high separation efficiency of carbonate gangue minerals and valuable minerals,satisfactory recoveries of niobium as well as titanium can be achieved.展开更多
Pd/γ-Al2O3–TiO2catalysts containing various compositions of titania and alumina were prepared by sol–gel and wet-impregnation methods in attempt to study the particle size, nature of phases, morphology and structur...Pd/γ-Al2O3–TiO2catalysts containing various compositions of titania and alumina were prepared by sol–gel and wet-impregnation methods in attempt to study the particle size, nature of phases, morphology and structure of the composite samples. The ethanol oxidation experiments, N2adsorption–desorption,FTIR, XRD and XPS were conducted, and the effects of Al2O3content on the surface area, phase transformation and structural properties of TiO2were investigated. The optimal value of ethanol conversion appeared on Pd/Al(0.05)–Ti and Pd/Al(0.90)–Ti catalysts irrespective of the ethanol oxidation temperature, and we call this as a double peaks phenomenon of catalytic activity. The XRD results reveal that the phase composition and crystallite size of the mixed oxides depend on Al2O3/TiO2ratio and calcination temperature. Al2O3can effectively prevent the agglomeration of TiO2and this can be ascribed to the formation of Al–O–Ti chemical bonds in Al2O3–TiO2crystals. Binding energy and Pd surface concentration of the catalysts were modified apparently, which may also lead to catalyst activity changes.展开更多
Nanocrystalline Na2ZrO3 was demonstrated as a promising acceptor for CO2 capture at elevated temperatures. The mechanism of nanocrystalline Na2ZrO3 formation from the soft-chemistry route is elucidated by varying prec...Nanocrystalline Na2ZrO3 was demonstrated as a promising acceptor for CO2 capture at elevated temperatures. The mechanism of nanocrystalline Na2ZrO3 formation from the soft-chemistry route is elucidated by varying precursors, preparation methods, and calciantion temperatures, combining detailed characterizations by X-ray diffraction (XRD) and scanning electron microscope (SEM) at different steps in the process. The results revealed that the drying method such as spraying drying and simple evaporation-drying did not influence the final product prop- erties. However both Na and Zr precursors had remarkable influences on the Na2ZrO3 formation. The solid reaction of Na intermediate and nanocrystalline ZrO2 in the calcination was identified as the key step for the Na2ZrO3 formation, where the formation of molten phase Na intermediate was found to be crucial to facilitate the solid reaction. We provided principles for rational design of the chemistry for the Na2ZrO3 formation where the formation of Na intermediate with low melting points is essential. Pure nanocrystalline Na2ZrO3 can be synthesized from a mixture containing sodium nitrate and zirconoxy citrate via the formation of NaNO3 with low melting point. However, it is not possible to form pure nanocrystalline Na2ZrO3 at relatively low temperatures from the mixtures of NaAc/ZrO(NO3)2 or NaCA/ZrOC12 due to the formation of Na2CO3 and NaC1 with high melting points.展开更多
The effect of mineralogy and texture on the beneficiation of goethitic ores from two different origins is highlighted. Sample A having 54.47% Fe with 8.57% loss of ignition (LOl) indicates the presence of vitreous a...The effect of mineralogy and texture on the beneficiation of goethitic ores from two different origins is highlighted. Sample A having 54.47% Fe with 8.57% loss of ignition (LOl) indicates the presence of vitreous and ochreous goethite, martite and microplaty hematite as the major minerals. Sample B contains 56.90% Fe with 14.4% LOI. There is a pisolithic laterite containing vitreous and ochreous goethite, quartz, kaolinitic clay and there is no hematite mineral. The liberated minerals in -150 + 100 μm size class are 74% for Sample A and 37% only for Sample B which shows that the Sample A appears to be more amenable to beneficiate. A concentrate of 46.7% with 63.22% Fe could be recovered from Sample A while subjected to gravity separation followed by wet magnetic separation. The Sample B does not respond to gravity and magnetic separation due to its complex mineralogy. However, calcination of the Sample B followed by magnetic separation gives the encouraging results. Thus, anomalous behaviour of the goethite dominated ores in beneficiation is attributed to the different textural and liberation characteristic.展开更多
The Shanxi Institute of Coal Chemistry,Chinese Academy of Sciences has designed and prepared a multiple confined-zone-based nickel hydrogenation catalyst by means of the atomic layer deposition(ALD)technology.In compa...The Shanxi Institute of Coal Chemistry,Chinese Academy of Sciences has designed and prepared a multiple confined-zone-based nickel hydrogenation catalyst by means of the atomic layer deposition(ALD)technology.In comparison with the non-confined-zone based catalyst,the multiple confined-zone-based nickel catalyst possesses an enhanced catalytic reactivity and catalytic stability for hydrogenation of cinnamaldehyde and nitrobenzene.展开更多
基金The authors would like to thank the financial support from the National Basic Research Program of China fgrant No.2004CB 217806)the National Natural Science Foundation of China (Grant No.20373043) the Scientific Research Key Foundation for the Returned Overseas Chinese Scholars of State Education Ministry.
文摘The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature. The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5 zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking.
基金supported by the National Natural Science Foundation of China(NSFC 20776089)the 985 Project of Sichuan University
文摘The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 nm.The effects of calcination temperature on the catalyst surface and micro structure properties as well as catalytic performance for the oxidation of carbon monoxide were also studied.All catalysts were characterized by N2 adsorption-desorption,XRD,XPS,FTIR,H2-TPR and O2-TPD.It was found that the properties and crystal size of cobalt-containing species strongly depended on the pore size of silica carrier.While the silica pore size increased from 7.7 to 27.0 nm,the Co3O4 crystal size increased from 8.5 to 13.5 nm.Moreover,it was demonstrated that if the spinel crystal structure of Co3O4 was obtained at a calcination temperature as low as 150℃,the catalyst sample would have a high Co3O4 surface dispersion and an increase of surface active species,and thus exhibit a high activity for the oxidation of carbon monoxide.
基金supported by the National Natural Science Foundation of China(No.21176177)the Natural Science Foundation of Tianjin(No.12JCYBJC13200)State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)
文摘SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by means of ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM), CO chemisorption, H2 and NH3 temperature-programmed desorptions (H2-TPD and NH3-TPD). Their catalytic performances for the deoxygena- tion of methyl laurate were tested in a fixed-bed reactor. When the precursors were calcined at 400 and 500 ℃, respectively, NiMoP2 phase could be formed apart from Ni2P and MoP phases in the prepared C400 and C500 catalysts. However, when the precursors were calcined at 600, 700 and 800 ℃, respectively, only Ni2P and MoP phases could be detected in the prepared C600, C700 and C800 catalysts. Also, in C400, C500 and C600 catalysts, Mo atoms were found to be entered in the lattice of Ni2P phase, but the entering extent became less with the increase of calcination temperature. As the calcination temperature of the precursor increased, the interaction between Ni and Mo in the prepared catalysts decreased, and the phosphide crystallite size tended to increase, subsequently leading to the decrease in the surface metal site density and the acid amount. C600 catalyst showed the highest activity among the tested ones for the deoxygenation of methyl laurate. As the calcination temperature of the precursor increased, the selectivity to C12 hydrocarbons decreased while the selectivity to C11 hydrocarbons tended to increase. This can be mainly attributed to the decreased Ni-Mo interaction and the increased phosphide particle size. In sum, the structure and performance of Ni-Mo bimetallic phosphide catalyst can be tuned by the calcination temperature of precursor.
文摘CoO/CeOcomposites with high surface areas and ultrafine crystalline sizes for catalytic combustion of methane were firstly prepared by a new sol-gel method which combined ultrasonic impregnation treatment and calcination in Natmosphere. The samples were characterized by various means such as nitrogen adsorption/desorption, X-ray diffraction(XRD), Htemperature-programmed reduction(H-TPR),X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM). Results showed that the modified catalyst had the mesoporous structure, comparatively higher amount of surface oxygen and larger oxygen vacancies than others. As a result of the structure and surface composition merits, a high methane combustion conversion(50%) could be obtained at a low temperature of 262 °C for the modified CoO/CeOcomposites catalysts. The experimental results demonstrated that ultrasonic impregnation treatment combined with the Nthermal treatment prior to calcination in air had a promising application for preparation of CoO/CeOcomposites catalysts for low-temperature catalytic combustion of methane.
基金the National Natural Science Foundation of China(Projects No.51374253 and No.51574289)
文摘The desulfurization efficiency and mechanism of the calcination of petroleum coke in ammonia atmosphere at lower than 1000 ℃ were investigated through a series of conditional experiments and comparison with other gases such as H_2. The topics of efficiency and reaction mechanism are usually discussed through investigation by means of the Fourier transform infrared spectroscopy(FT-IR), the Brunauer-Emmett-Teller(BET) technique, and the thermogravimetry coupled with the mass spectrometry(TG-MS). Results showed that in addition to H_2, ammonia not only could retain a high desulfurization rate but could also reduce coke loss during the desulfurization process of petroleum coke. The best desulfurization conditions covered a petroleum coke particle size of less than 0.1 mm, a calcination temperature of 800 ℃ in ammonia atmosphere with a flow rate of 10 L/h, and a heating duration of more than 120 min. Ammonia decomposition, H_2 generation, decline in the activation energy of the carbon–sulfur bonds, and petroleum coke with a largest specific surface area at 800 ℃ are the key goals of desulfurization studied thereby. As proved by TG-MS analysis, given a large quantity of H_2, ammonia can be decomposed at the same temperature to completely come into contact with the sulfur species in petroleum coke to generate H_2S.
基金National Key Research and Development program(2018YFA0209403)National Natural Science Foundation of China(Youth)program(21908027)for financing this research。
文摘In order to develop high-efficiency and low-cost catalyst for the slurry-phase hydrocracking of vacuum residue(VR),the catalyst supported on natural rectorite was prepared,and the effect of calcination modification of rectorite on the catalyst properties and performance was investigated.The support of rectorite and catalyst were characterized by XRD,FTIR,Py-FTIR,H_(2)-TPR and XPS to examine their structures and properties.The comparative reaction results show that VR conversions for the catalysts supported on calcined rectorite were similar with that on raw rectorite,possibly due to the VR cracking reaction controlled by the thermal cracking following free radical mechanism because of few acid sites observed on the catalysts surface.However,the yields of naphtha and middle distillates for the various catalysts were obviously different,and increased following as Rec-Mo(40.4 wt%)
文摘TiOz nanotubes (TiO2-NTs) were synthesized by the hydrothermal method. Co and Mo active components were supported on a series of the as-prepared TiO2-NTs samples which were calcined at different temperatures. The effects of support calcination temperature of CoMo/TiOz- NTs catalysts on their catalytic performance were investigated for selective hydrodesulfurization (HDS). The samples were characterized by means of the scanning electron microscopy (SEM), the transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy and H2 temperature-programmed reduction (Hz-TPR). The experimental results revealed that TiOz-NTs support calcined under 500℃ can maintain the nanotubular structure with higher surface area and pore volume. Meanwhile, the obtained supported CoMo/TiO2-NTs catalysts exhibited weak metal-support interaction, more octahedral Mo6+ species and high catalytic performance in selective HDS.
基金financially supported by Independent Research Subject from Ministry of Science and Technology of China(No.2008BWZ005)
文摘Coral reef-like Ni/Al2O3 catalysts were prepared by co-precipitation of nickel acetate and aluminium nitrate with sodium carbonate aqueous solution in the medium of ethylene glycolye.Methanation of syngas was carried out over coral reef-like Ni/Al2O3 catalysts in a continuous flow type fixed-bed reactor.The structure and properties of the fresh and used catalysts were studied by SEM,N2 adsorption-desorption,XRD,H2-TPR,O2-TPO,TG and ICP-AES techniques.The results showed that the coral reef-like Ni/Al2O3 catalysts exhibited better activity than the conventional Ni/Al2O3-H2O catalysts.The activities of coral reef-like catalysts were in the order of Ni/Al2O3-673Ni/Al2O3-573Ni/Al2O3- 473Ni/Al2O3-773.Ni/Al2O3-673-EG catalyst showed not only good activity and improved stability but also superior resistance to carbon deposition,sintering,and Ni loss.Under the reaction conditions of CO/H2(molar ratio)=1:3,593 K,atmospheric pressure and a GHSV of 2500 h-1,CH4 selectivity was 84.7%,and the CO conversion reached 98.2%.
文摘In this study,selective dealumination of Beta zeolites was performed through partially removing the templating agent in Beta zeolites by calcination and then removing the aluminum on the external surface of Beta zeolites with acid treatment.Hydrocracking catalysts were prepared by loading WO_(3)onto these dealuminated Beta zeolites.It was shown that the surface SiO_(2)/Al_(2)O_(3)of selectively dealuminated Beta zeolites was higher than that of conventionally dealuminated samples for the same bulk SiO_(2)/Al_(2)O_(3),and the hydrogenation activity of the catalyst of the selectively dealuminated Beta zeolites was lower than that of conventionally dealuminated Beta zeolites.The experimental results for tetralin hydrocracking to BTX showed that the catalysts based on the selectively dealuminated Beta zeolites had higher BTX selectivity and lower coke formation rate than that the catalysts based on the conventionally dealuminated Beta zeolites.
文摘A series of x (Fe,Ni)/Al2O3 catalysts (x = 2-12 wt%) were prepared using incipient wetness method and studied for the conversion of synthesis gas to light olefins.6 wt%(Fe,Ni)/Al2O3 catalyst was found to be the optimal catalyst for the production of C2-C4 olefins.The effects of calcination behaviors and operational conditions on the catalytic performance of the optimal catalyst were investigated.The best operational conditions were molar feed ratio H2/CO = 2/1,T = 260 ℃,gas hourly space velocity (GHSV) = 2600 h^-1 and the pressure of 3 bar.Character-izations of both precursors and catalysts were carried out using X-ray diffraction (XRD),temperature-programmed reduction (TPR),scanning electron microscopy (SEM),N2-adsorption-desorption measurement,thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC).
基金financially supported by the China Postdoctoral Science Foundation(2021M700396)the National Natural Science Foundation of China(52102206)the National Research Foundation of Republic of Korea(2021K2A9A2A06044652)。
文摘Cycle stability and thermal safety are critical to the commercialization of nickel-rich layered materials,yet whether there is a potential correlation between these two factors is still controversial. Herein, the relationship between the cycle stability and thermal stability of nickel-rich cathode materials have been systematically studied through five different calcination temperatures of Li[NiCoMn]O(NCM83) cathode materials. The research results confirm that the cycle stability and thermal safety of nickel-rich cathode materials do not necessarily show a positive correlation. Actually, with the calcination temperature elevated, the thermal stability of the NCM83 is enhanced, while the cycle stability is degraded. This opposite correlation is not commonly reported in previous literatures. In this work, systematical characterizations demonstrate that under the experimental conditions, the capacity retention of NCM83 is mainly determined by the Li/Ni cation disorder and H2-H3 irreversible phase transition,which is optimal at lower calcination temperature. Meanwhile, the thermal stability is mainly impacted by thermal expansion characteristics and interfacial stability of cathode material, and it is dramatically improved by the mechanical strength of the secondary particles reinforced at high calcinated temperature. This study provides some new insights on understanding and designing of the high-energy cathode materials with long cycle-life and superior safety.
文摘The physic-chemical properties of LaFe0.95Pd0.05O3 perovskites were strongly dependent on the temperature of calcination. Most of the organic substances and inorganic impurities were readily removed at 723 K but single-phase and well crystallized perovskite structure was formed at 873 K. With further raising the calcination temperature, the crystallite size of LaFe0.95Pd0.05O3 increased considerably. The LaFe0.95Pd0.05O3 sample that calcined at 1073 K showed only comparable activity as the reference LaFeO3 catalyst, in particular below 923 K, but pre-treatment with the reaction gas at 1223 K resulted in significantly enhanced activity due to the generation of active PdO species on the surface. The hysteresis feature upon heating-cooling cycle further confirmed the strong interaction between Pd and LaFeO3 in the perovskite structure.
基金supported by the National Nature Science Foundations of China (Grant no. 51372212)
文摘A series of graphitic-C3N4/ZnS(g-C3N4/ZnS) supercapacitor electrode materials have been prepared via a one-step calcination process of zinc acetate/thiourea with different mass ratios under nitrogen atmosphere. The optimized g-C3N4/ZnS composite shows a highest specific capacitance of 497.7 F/g at 1 A/g and good cycling stability with capacitance retention of 80.4% at 5 A/g after 1000 cycles. Moreover, gC3N4/ZnS composites display an improved supercapacitor performance in terms of specific capacitance compared to the pure g-C3N4 and ZnS. In addition, our designed symmetric supercapacitor device based on g-C3N4/ZnS composite electrodes can exhibit an energy density of 10.4 Wh/kg at a power density of 187.3 W/kg. As a result, g-C3N4/ZnS composites are expected to be a prospective material for supercapacitors and other energy storage applications.
基金supported by the Scientific Research Fund of Hunan Provincial Science & Technology Department(2012FJ3023)the Research Fund for the Doctroral Program of Higher Education of China(20120031110001)
文摘Electrochemical performances of LiCoO_2 as a candidate material for supercapacitor are systematically investigated. LiCoO_2 nanomaterials are synthesized via hydrothermal reaction with consequent calcination process. And the particle size increases as the calcination temperature rises. LCO-650 sample with the largest particle size displays the maximum capacitances of 817.5 F·g^-1 with the most outstanding capacity retention rate of 96.8% after 2000 cycles. It is shown that large particle size is beneficial to the electrochemical and structural stability of LiCoO_2 materials. We speculate that the micron-sized waste LiCoO_2 materials have great potential for supercapacitor application. It may provide a novel recovered approach for spent LIBs and effectively relieve the burdens on the resource waste and environment pollution.
文摘NH4Y zeolite was prepared through ion-exchange of NaY zeolite with an ammonium salt. Then LaY zeolite was obtained through a secondary ion-exchange of NHaY zeolite with a rare earth salt solution followed by calcination of the zeolite product. Dynamic adsorptive desulfurization of naphtha was conducted in the presence of the modified LaY zeolite, and the sulfur content of the treated naphtha samples was analyzed by microcoulometry. The test results showed that under dynamic conditions the LaY zeolite prepared through secondary ion-exchange of NH4Y zeolite, which was prepared using 1.0 mol/L ammonium salt, with the rare earth salt exhibited a better desulfurization efficiency. Furthermore, the LaY zeolite achieved a best desulfurization effect at an adsorption temperature of 45 ℃ and an adsorbent/oil ratio of 1:2.
基金This work was supported by the Basic Science Center Project for National Natural Science Foundation of China(No.72088101)the National Key Research and Development Program of China(No.2020YFC1909800)the Hunan Provincial Innovation Founda-tion for Postgraduate(No.2021zzts0298).
文摘In this work,a novel process consisting of calcining-slaking followed by gravity separation for the enrichment of niobium(Nb)and titanium(Ti)from carbonatite pyrochlore ore was proposed,validated and compared with the current mainstream flotation method.During calcining of the pyrochlore ore,within which the carbonates were transformed into lime.Subsequently,when the calcined ore was slaked,lime was transformed into hydroxide with fine particles which were amenable to gravity separation.After calcining at 900℃for 60 min,slaking at 90℃for 10 min with a liquid–solid ratio of 3:1(mL/g),approximately 40%of tailings can be removed by gravity separation,the recoveries of Nb and Ti were 94.7%and 91.0%,and the enrichment ratios of Nb and Ti were 1.61 and 1.43,respectively.The new approach exhibits high separation efficiency of carbonate gangue minerals and valuable minerals,satisfactory recoveries of niobium as well as titanium can be achieved.
基金supported by Shanxi Provincial Science and Technology Projects(No.20140313002-2)the National Natural Science Foundation of China(No.21073131)
文摘Pd/γ-Al2O3–TiO2catalysts containing various compositions of titania and alumina were prepared by sol–gel and wet-impregnation methods in attempt to study the particle size, nature of phases, morphology and structure of the composite samples. The ethanol oxidation experiments, N2adsorption–desorption,FTIR, XRD and XPS were conducted, and the effects of Al2O3content on the surface area, phase transformation and structural properties of TiO2were investigated. The optimal value of ethanol conversion appeared on Pd/Al(0.05)–Ti and Pd/Al(0.90)–Ti catalysts irrespective of the ethanol oxidation temperature, and we call this as a double peaks phenomenon of catalytic activity. The XRD results reveal that the phase composition and crystallite size of the mixed oxides depend on Al2O3/TiO2ratio and calcination temperature. Al2O3can effectively prevent the agglomeration of TiO2and this can be ascribed to the formation of Al–O–Ti chemical bonds in Al2O3–TiO2crystals. Binding energy and Pd surface concentration of the catalysts were modified apparently, which may also lead to catalyst activity changes.
文摘Nanocrystalline Na2ZrO3 was demonstrated as a promising acceptor for CO2 capture at elevated temperatures. The mechanism of nanocrystalline Na2ZrO3 formation from the soft-chemistry route is elucidated by varying precursors, preparation methods, and calciantion temperatures, combining detailed characterizations by X-ray diffraction (XRD) and scanning electron microscope (SEM) at different steps in the process. The results revealed that the drying method such as spraying drying and simple evaporation-drying did not influence the final product prop- erties. However both Na and Zr precursors had remarkable influences on the Na2ZrO3 formation. The solid reaction of Na intermediate and nanocrystalline ZrO2 in the calcination was identified as the key step for the Na2ZrO3 formation, where the formation of molten phase Na intermediate was found to be crucial to facilitate the solid reaction. We provided principles for rational design of the chemistry for the Na2ZrO3 formation where the formation of Na intermediate with low melting points is essential. Pure nanocrystalline Na2ZrO3 can be synthesized from a mixture containing sodium nitrate and zirconoxy citrate via the formation of NaNO3 with low melting point. However, it is not possible to form pure nanocrystalline Na2ZrO3 at relatively low temperatures from the mixtures of NaAc/ZrO(NO3)2 or NaCA/ZrOC12 due to the formation of Na2CO3 and NaC1 with high melting points.
基金Ministry of Steel for funding the research work (GAP 0224)
文摘The effect of mineralogy and texture on the beneficiation of goethitic ores from two different origins is highlighted. Sample A having 54.47% Fe with 8.57% loss of ignition (LOl) indicates the presence of vitreous and ochreous goethite, martite and microplaty hematite as the major minerals. Sample B contains 56.90% Fe with 14.4% LOI. There is a pisolithic laterite containing vitreous and ochreous goethite, quartz, kaolinitic clay and there is no hematite mineral. The liberated minerals in -150 + 100 μm size class are 74% for Sample A and 37% only for Sample B which shows that the Sample A appears to be more amenable to beneficiate. A concentrate of 46.7% with 63.22% Fe could be recovered from Sample A while subjected to gravity separation followed by wet magnetic separation. The Sample B does not respond to gravity and magnetic separation due to its complex mineralogy. However, calcination of the Sample B followed by magnetic separation gives the encouraging results. Thus, anomalous behaviour of the goethite dominated ores in beneficiation is attributed to the different textural and liberation characteristic.
文摘The Shanxi Institute of Coal Chemistry,Chinese Academy of Sciences has designed and prepared a multiple confined-zone-based nickel hydrogenation catalyst by means of the atomic layer deposition(ALD)technology.In comparison with the non-confined-zone based catalyst,the multiple confined-zone-based nickel catalyst possesses an enhanced catalytic reactivity and catalytic stability for hydrogenation of cinnamaldehyde and nitrobenzene.