This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic...This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic disturbance. Only the matched conditions and the possible bound of the uncertainties are demanded. Based on the stochastic Lyapunov stability theory, an explicit controller is constructed in the gradient direction, which renders responses of the closed-loop systems be globally bounded in probability. When the systems degrade to linear systems, the controller becomes linear. Illustrative examples are given to show the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(61304020)
文摘This paper is concerned with the global boundedness problem for a class of stochastic nonlinear systems with matched conditions. The uncertainties in the systems are due to parameter variations and external stochastic disturbance. Only the matched conditions and the possible bound of the uncertainties are demanded. Based on the stochastic Lyapunov stability theory, an explicit controller is constructed in the gradient direction, which renders responses of the closed-loop systems be globally bounded in probability. When the systems degrade to linear systems, the controller becomes linear. Illustrative examples are given to show the effectiveness of the proposed method.