在电气化铁路牵引供电系统中,铁路能量路由器(railway energy router,RER)用于回收列车制动能量、接入光伏等新能源,同时改善负序、无功等电能质量,但是既有结构包含两套逆变器和变压器,存在成本高、工程应用难的问题。为此,提出一种基...在电气化铁路牵引供电系统中,铁路能量路由器(railway energy router,RER)用于回收列车制动能量、接入光伏等新能源,同时改善负序、无功等电能质量,但是既有结构包含两套逆变器和变压器,存在成本高、工程应用难的问题。为此,提出一种基于跨相式单相逆变器的新型铁路能量路由器结构,其交流侧跨接α/β相牵引母线、直流侧接入光伏储能。首先,推导新型结构的数学模型和工作原理;然后,针对逆变器传统两端口模式转变为RER的三端口模式存在的有功/无功耦合问题,提出增加无功补偿装置的硬件解耦方法;其次,针对新型RER三端口间多向能流问题,提出一种多层协调优化控制策略。最后,基于典型工况及实测数据,进行了仿真验证,结果表明:三相电压不平衡度从2.52%降低至1.58%,平均功率因数从0.688上升至0.966,再生制动回收率61.65%,光伏消纳率94.16%;主设备容量降低42.31%,成本降低37.23%,说明所提新型RER在实现现有RER相同功能的前提下大幅降低了成本,具有重要的理论和工程价值。展开更多
针对车辆低速行驶的制动能量回收率低,频繁充放电影响动力电池寿命的问题,提出以电池荷电状态(state of charge,SOC)、制动强度、车速和制动间隔时间为输入,再生制动力分配系数为输出的纯电动汽车模糊控制再生制动策略。同时,采用遗传...针对车辆低速行驶的制动能量回收率低,频繁充放电影响动力电池寿命的问题,提出以电池荷电状态(state of charge,SOC)、制动强度、车速和制动间隔时间为输入,再生制动力分配系数为输出的纯电动汽车模糊控制再生制动策略。同时,采用遗传算法对控制参数进行优化。在Simulink中搭建控制策略模型,并在不同测试工况下与CarSim联合进行仿真,结果表明,相比于仅以电池SOC、制动强度和车速为输入的模糊控制再生制动策略,所提策略减少了制动能量回收次数,提高了制动能量回收率。该策略不仅可以改善对动力电池的损害情况,而且可以获得更多的制动能量。展开更多
文摘在电气化铁路牵引供电系统中,铁路能量路由器(railway energy router,RER)用于回收列车制动能量、接入光伏等新能源,同时改善负序、无功等电能质量,但是既有结构包含两套逆变器和变压器,存在成本高、工程应用难的问题。为此,提出一种基于跨相式单相逆变器的新型铁路能量路由器结构,其交流侧跨接α/β相牵引母线、直流侧接入光伏储能。首先,推导新型结构的数学模型和工作原理;然后,针对逆变器传统两端口模式转变为RER的三端口模式存在的有功/无功耦合问题,提出增加无功补偿装置的硬件解耦方法;其次,针对新型RER三端口间多向能流问题,提出一种多层协调优化控制策略。最后,基于典型工况及实测数据,进行了仿真验证,结果表明:三相电压不平衡度从2.52%降低至1.58%,平均功率因数从0.688上升至0.966,再生制动回收率61.65%,光伏消纳率94.16%;主设备容量降低42.31%,成本降低37.23%,说明所提新型RER在实现现有RER相同功能的前提下大幅降低了成本,具有重要的理论和工程价值。
文摘针对车辆低速行驶的制动能量回收率低,频繁充放电影响动力电池寿命的问题,提出以电池荷电状态(state of charge,SOC)、制动强度、车速和制动间隔时间为输入,再生制动力分配系数为输出的纯电动汽车模糊控制再生制动策略。同时,采用遗传算法对控制参数进行优化。在Simulink中搭建控制策略模型,并在不同测试工况下与CarSim联合进行仿真,结果表明,相比于仅以电池SOC、制动强度和车速为输入的模糊控制再生制动策略,所提策略减少了制动能量回收次数,提高了制动能量回收率。该策略不仅可以改善对动力电池的损害情况,而且可以获得更多的制动能量。