Matrix perturbation theory is utilized to investigate high-rank line of sight multiple input multiple output channels in a microwave relay system. The upper and lower bounds of channel capacity are derived based on sp...Matrix perturbation theory is utilized to investigate high-rank line of sight multiple input multiple output channels in a microwave relay system. The upper and lower bounds of channel capacity are derived based on space time block codes technique and singular values decomposition. A useful constraint for designing LOS MIMO channels is developed by the use of the condition number of the MIMO channel matrix. The theoretical analysis of channel capacity is confirmed by the simulation. The results show that the proposed method is able to give a physical explanation of the high-rank LOS MIMO channel matrix characteristics.展开更多
基金supported partly by the National Natural Science Foundation of China(60872022)the"973"Program of China(2008CB317109),the Science Foundation of Guangxi Province of China(0991241)the Foundation of Guangxi Key Laboratory of Information and Communication(10903).
文摘Matrix perturbation theory is utilized to investigate high-rank line of sight multiple input multiple output channels in a microwave relay system. The upper and lower bounds of channel capacity are derived based on space time block codes technique and singular values decomposition. A useful constraint for designing LOS MIMO channels is developed by the use of the condition number of the MIMO channel matrix. The theoretical analysis of channel capacity is confirmed by the simulation. The results show that the proposed method is able to give a physical explanation of the high-rank LOS MIMO channel matrix characteristics.