期刊文献+
共找到2,297篇文章
< 1 2 115 >
每页显示 20 50 100
Efficient Perovskite Quantum Dots Light-emitting Diodes:Challenges and Optimization 被引量:2
1
作者 LI Mengjiao WANG Ye +1 位作者 WANG Yakun LIAO Liangsheng 《发光学报》 北大核心 2025年第3期452-461,共10页
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel... Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs. 展开更多
关键词 perovskite quantum dot light-emitting diodes(Pe-QLEDs) PHOTOLUMINESCENCE DEFECTS ion migration
在线阅读 下载PDF
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells 被引量:1
2
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
在线阅读 下载PDF
Ultrafast Self-powered Near-infrared Photodetectors and Imaging Array Based on Tin-lead Mixed Perovskites
3
作者 LIU Jingjing YANG Zhichun +7 位作者 BAO Haotian MENG Xinqin QI Minru YANG Changgang ZHANG Guofeng QIN Chengbing XIAO Liantuan JIA Suotang 《发光学报》 北大核心 2025年第6期1037-1047,共11页
Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains chall... Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains challenging,primarily because of the rapid crystallization and the susceptibility of Sn^(2+) to oxidation.To ad⁃dress these issues,this study introduces the multifunctional molecules 2,3-difluorobenzenamine(DBM)to modulate the crystallization of Sn-Pb mixed perovskites and retard the oxidation of Sn^(2+),thereby significantly enhancing film quality.Compared with the pristine film,Sn-Pb mixed perovskite films modulated by DBM molecules exhibit a high⁃ly homogeneous morphology,reduced roughness and defect density.The self-powered NIR PDs fabricated with the improved films have a spectral response range from 300 nm to 1100 nm,a peak responsivity of 0.51 A·W^(-1),a spe⁃cific detectivity as high as 2.46×10^(11)Jones within the NIR region(780 nm to 1100 nm),a linear dynamic range ex⁃ceeding 152 dB,and ultrafast rise/fall time of 123/464 ns.Thanks to the outstanding performance of PDs,the fabri⁃cated 5×5 PDs array demonstrates superior imaging ability in the NIR region up to 980 nm.This work advances the development of Sn-Pb mixed perovskites for NIR detection and paves the way for their commercialization. 展开更多
关键词 tin-lead mixed perovskites near-infrared photodetectors imaging array oxidation crystallization modulation
在线阅读 下载PDF
Advances in the Fabrication of Perovskite Solar Cells by Roll-to-Roll Technology
4
作者 ZHAO Jiawei CHEN Haolin +1 位作者 LUO Ni LIU Zhenguo 《材料导报》 北大核心 2025年第1期98-114,共17页
In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages inclu... In recent years,perovskite solar cells(PSCs)have garnered significant attention as a potential mainstream technology in the future photovol-taic(PV)market.This is primarily attributed to their salient advantages including high efficiency,low cost,and ease of preparation.Nota-bly,the power conversion efficiency(PCE)of PSCs has experienced a remarkable increase from 3.8%in 2009 to over 26%at present.Conse-quently,the adoption of roll-to-roll(R2R)technology for PSCs is considered a crucial step towards their successful commercialization.This arti-de reviews the diverse substrates,scalable deposition techniques(such as solution-based knife-coating and spraying technology),and optimiza.tion procedures employed in recent years to enhance device performance within the R2R process.Additionally,novel perspectives are presented to enrich the existing knowledge in this field. 展开更多
关键词 perovskite solar cells roll-to-roll technology substrate scalable deposition technology performance optimization
在线阅读 下载PDF
Efficient and Stable Ruddlesden-Popper Perovskite Solar Cell with Tailored Interlayer Molecular Interaction 被引量:14
5
作者 CHEN Yonghua 《材料导报》 EI CAS CSCD 北大核心 2020年第7期1-2,共2页
Perovskite materials have attracted much attention in recent years because of their excellent photovoltaic properties for solar cell,including high optical absorption,small exciton binding energy,low trap densities,an... Perovskite materials have attracted much attention in recent years because of their excellent photovoltaic properties for solar cell,including high optical absorption,small exciton binding energy,low trap densities,and long-range ambipolar carrier diffusion lengths[1-2].However,perovskite materials are easily degraded under the conditions of light,electric field,heating,water and oxygen,which seriously hinder the further commercialization of perovskite solar cells(PSCs)[3-4].Recently,two-dimensional Ruddlesden-Popper phase(2DRP)perovskites are known to exhibit improved photostability and environmental stability compared with their three-dimensional(3D)counterparts[5-7].Ho-wever,fundamental questions remain over the interaction between the bulky alkylammoniums and the 2DRP perovskite framework[8]. 展开更多
关键词 perovskite stability AMMONIUM
在线阅读 下载PDF
Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming 被引量:1
6
作者 Fabiola Nerina Agüero Jose Antonio Alonso +1 位作者 Maria Teresa Fernández-Díaz Luis Eduardo Cadus 《燃料化学学报》 EI CAS CSCD 北大核心 2018年第11期1332-1341,共10页
Perovskites as host structures of cations were used in order to generate in situ active and stable catalysts for ethanol steam reforming. For this purpose,La_(1-x)Mg_xAl_(1-y)Ni_yO_3(x = 0.1; y = 0,0.1,0.2,0.3) perovs... Perovskites as host structures of cations were used in order to generate in situ active and stable catalysts for ethanol steam reforming. For this purpose,La_(1-x)Mg_xAl_(1-y)Ni_yO_3(x = 0.1; y = 0,0.1,0.2,0.3) perovskites were synthetized by the citrate method.Ni segregation is evident for a substitution level higher than 0. 2. The segregation of Ni as NiO generated species interacts with different metal-support after the reduction step. The y = 0.1 catalyst presents the highest H_2 yield value about 85% during reaction time,with low mean values of CH_4 and CO selectivities of 3.4% and 11%,respectively and a low carbon formation. The better performance of y = 0.1 catalyst could be attributed to the minor proportion of segregated phases,thus a controlled expulsion of Ni is successfully reached. 展开更多
关键词 perovskites CATALYST DESIGN ETHANOL STEAM REFORMING
在线阅读 下载PDF
Solution-processed perovskite solar cells 被引量:6
7
作者 CHANG Jian-hui LIU Kun +3 位作者 LIN Si-yuan YUAN Yong-bo ZHOU Cong-hua YANG Jun-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1104-1133,共30页
Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promis... Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices. 展开更多
关键词 perovskite solar cells mesoporous structure planar structure solution process large-scale deposition techniques
在线阅读 下载PDF
Porous layered La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)perovskite with enhanced catalytic activities for oxygen reduction 被引量:2
8
作者 XU Wei-lai XU Zhi-feng +6 位作者 CHEN Tian-yu ZHONG Xiao-cong XIE Yong-min XIE Xiao-yun CHEN Zhe-qin LIU Jia-ming WANG Rui-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1305-1315,共11页
Low-cost catalysts with high activity are in immediate demand for energy storage and conversion devices.In this study,polyvinyl pyrrolidone was used as a complexing agent to synthesize La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)... Low-cost catalysts with high activity are in immediate demand for energy storage and conversion devices.In this study,polyvinyl pyrrolidone was used as a complexing agent to synthesize La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)perovskite oxide.The obtained porous layered LSCF has a large specific surface area of 23.74 m^(2)/g,four times higher than that prepared by the traditional sol-gel method(5.08 m^(2)/g).The oxygen reduction reaction activity of the oxide in 0.1 mol/L KOH solution was studied using a rotating ring-disk electrode.In the tests,the initial potential of 0.88 V(vs.reversible hydrogen electrode)and the limiting diffusion current density of 5.02 mA/cm^(2)were obtained at 1600 r/min.Therefore,higher catalytic activity and stability were demonstrated,compared with the preparation of LSCF perovskite oxide by the traditional method. 展开更多
关键词 oxygen reduction reaction ELECTROCATALYST perovskite layered structure
在线阅读 下载PDF
Perovskite LEDs: World Record of External Quantum Efficiency That ApproachThose of the Best-performing Organic LEDs 被引量:1
9
作者 余昌敏 《材料导报》 EI CAS CSCD 北大核心 2019年第11期1773-1774,共2页
Light-emitting diodes (LEDs), which convert electricity to light, are widely used in modern society,for example, in lighting, flat-panel displays, medical devices and many other situations. Ge- nerally, the efficiency... Light-emitting diodes (LEDs), which convert electricity to light, are widely used in modern society,for example, in lighting, flat-panel displays, medical devices and many other situations. Ge- nerally, the efficiency of LEDs is limited by nonradiative recombination (whereby charge carriers recombine without releasing photons) and light trapping [1]. In planar LEDs, such as organic LEDs, around 70% to 80% of the light generated from the emitters is trapped in the device [2], leaving considerable opportunity for improvements in efficiency. Many methods, including the use of diffraction gratings, low-index grids and buckling patterns, have been used to extract the light trapped in LEDs [3]. However, these methods usually involve complicated fabrication processes and can distort the light-output spectrum and directionality [3]. 展开更多
关键词 perovskite LEDS QUANTUM efficiency
在线阅读 下载PDF
High Sensitivity Submicron Scale Temperature Sensor Based on Perovskite Nanoplatelet Lasers 被引量:1
10
作者 ZHAO Ruofan TAO Jianxun +7 位作者 XI Yuying CHEN Jiangzhao JI Ting WANG Wenyan WEN Rong CUI Yanxia CHEN Junsheng LI Guohui 《发光学报》 EI CAS CSCD 北大核心 2024年第9期1511-1520,共10页
Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonato... Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields. 展开更多
关键词 temperature sensor submicron scale perovskite nanoplatelet
在线阅读 下载PDF
Growth Control of Quasi-two-dimensional Perovskites:Structure-dependent Exciton and Charge Behavior 被引量:1
11
作者 DONG Wei LI Jing +2 位作者 YIN Wenxu ZHANG Xiaoyu ZHENG Weitao 《发光学报》 EI CAS CSCD 北大核心 2024年第11期1767-1781,共15页
While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LED... While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs. 展开更多
关键词 quasi-two-dimensional perovskites light-emitting diodes growth control energy transfer
在线阅读 下载PDF
Thermal decomposition effect of MgCo_(2)O_(4)nanosheets on ammonium perchlorate-based energetic molecular perovskites 被引量:3
12
作者 Er-hai An Xiao-xia Li +3 位作者 Hai-xia Zhao Ying-xin Tan Xiong Cao Peng Deng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期111-119,共9页
Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the the... Energetic molecular perovskites have attracted widespread attention in the fields of energy materials due to their high detonation performance.In this work,we reported the effect of MgCo_(2)O_(4) nanosheets on the thermal decomposition of ammonium perchlorate(NH_(4)ClO_(4),AP)-based energetic molecular perovskites(AP-based energetic molecular perovskites).The morphology and structure of the MgCo_(2)O_(4) nanosheets were characterized.And their catalytic effect on the thermal decomposition of AP-based energetic molecular perovskites(H_2pz)[NH_(4)(ClO_(4))_(3)](PAP-4),(H_2dabco)[NH_(4)(ClO_(4))_(3)](DAP-4),(H_2mpz)[NH_(4)(ClO_(4))_(3)](PAP-M_(4)),and (H_2hpz)[NH_(4)(ClO_(4))_(3)](PAP-H_(4)) was analyzed.The results showed that MgCo_(2)O_(4) nanosheets had excellent intrinsically catalytic performance towards enhancing the thermal decomposition of AP-based energetic molecular perovskites.After adding MgCo_(2)O_(4) nanosheets,the thermal decomposition peak temperatures of PAP-4,DAP-4,PAP-M_(4),and PAP-H_(4) had been reduced by35.7℃,48.4℃,37.9℃,and 43.6℃,respectively.And the activation energy(Ea)of the thermal decomposition of AP-based energetic molecular perovskites had been reduced,the Eaof PAP-H_(4) decreased by 46.4 kJ/mol at most among them.The catalytic mechanism of MgCo_(2)O_(4) nanosheets for AP-based energetic molecular perovskites is analyzed.This work provides a reference for the future application of AP-based energetic molecular perovskites. 展开更多
关键词 AP-based energetic molecular perovskites MgCo_(2)O_(4)nanosheets Thermal decomposition Catalytic performance
在线阅读 下载PDF
Ti_(3)C_(2)T_(x) MXene for organic/perovskite optoelectronic devices 被引量:1
13
作者 CHEN Ke-fan CAI Ping +3 位作者 PENG Hong-liang XUE Xiao-gang WANG Zhong-min SUN Li-xian 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3935-3958,共24页
MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent... MXenes are emerging two-dimensional(2D)nanomaterials composed of transition metal carbides and/or nitrides and possess unique layered structures with abundant surface functional groups,which enable them with excellent and tunable properties.MXenes films can be solution-processed in polar solvents and are very suitable for optoelectronic device applications.Especially,Ti_(3)C_(2)T_(x) MXene with the clear advantages of facile synthesis,flexible surface controlling,easily tunable work function,high optical transmittance and excellent conductivity shows great potential for applications in organic/perovskite optoelectronic devices.Therefore,this review briefly introduces the mainstream synthesis methods,optical and electrical properties of MXenes,and comprehensively summarizes the versatile applications of Ti_(3)C_(2)T_(x) MXene in different functional layers(electrode,interface layer and active layer)of organic/perovskite optoelectronic devices including solar cells and light-emitting diodes.Finally,the current application characteristics and the future possibilities of MXenes in organic/perovskite optoelectronic devices are concluded and discussed. 展开更多
关键词 Ti_(3)C_(2)T_(x)MXene organic/perovskite solar cells organic/perovskite light-emitting diodes ELECTRODE interface layer active layer
在线阅读 下载PDF
Highly soluble dendritic fullerene derivatives as electron transport material for perovskite solar cells 被引量:1
14
作者 CHENG Zheng-chun FANG Yin-yu +6 位作者 WANG Ai-fei MA Tao-tao LIU Fang GAO Song YAN Su-hao DI Yi QIN Tian-shi 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3714-3727,共14页
A series of shape-persistent polyphenylene dendritic C_(60)derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder[4+2]cycloaddition reaction.These increasing hype... A series of shape-persistent polyphenylene dendritic C_(60)derivatives as the electron transport materials were designed and synthesized via a catalyst-free Diels-Alder[4+2]cycloaddition reaction.These increasing hyperbranched scaffolds could effectively enhance the solubility;notably,both first and second generation dendrimers,C_(60)-G1 and C_(60)-G2,demonstrated more than 5 times higher solubilities than pristine C_(60).Furthermore,both simulated and experimental data proved their promising solution-processabilities as electron-transporting layers(ETLs)for perovskite solar cells.As a result,the planar p-i-n structural perovskite solar cell could achieve a maximum power conversion efficiency of 14.7%with C_(60)-G2. 展开更多
关键词 dendritic structures fullerene C60 electron transport materials enhanced solubility perovskite solar cells
在线阅读 下载PDF
Oxygen-and photo-induced decay of perovskite solar cells:Mechanisms and strategies 被引量:1
15
作者 PENG Xin-xin ABDALLA Danyal +3 位作者 LIU Fei DAOUD Walid A. YUAN Yong-bo LIN Yun 《Journal of Central South University》 CSCD 2024年第12期4366-4396,共31页
Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology with their rapid improvement in power conversion efficiency from 3.8%to 26.7%.However,the unsatisfactory stability is still a major hurdl... Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology with their rapid improvement in power conversion efficiency from 3.8%to 26.7%.However,the unsatisfactory stability is still a major hurdle to the future commercialization of PSCs.Among various causes of instability,oxygen and photo-induced instability are indispensable aspects to be considered,especially there is a growing demand of manufacturing PSCs with low-cost environmental conditions.This review aims to provide a timely and comprehensive summary of the investigations related to the oxygen-and photo-induced decay(OP-decay)in perovskites.Key factors affecting the OP decay pathways and decay rate have been discussed.Techniques for the analysis of oxygen and photo-induced decay processes are included.Strategies for improving photo-oxygen stability have been summarized,from the aspects of suppressing the generation yield of superoxide,protecting perovskites from the generated superoxide,and slowing down the oxygen penetration,respectively. 展开更多
关键词 perovskite solar cells oxygen-and photo-induced decay superoxide stability
在线阅读 下载PDF
Synthesis of A-position Ba-doped Perovskite LaCoO_(3) and Performance of Photocatalytic Phenol Degradation 被引量:1
16
作者 YUAN Li-jing ZHAO Kun-feng +7 位作者 SONG Jin GUO Shi-long GUO Jia-le WANG Yan MENG Xian-jie WEI Xian-xian LIU Zhen-min WANG Xiao-xiao 《分子催化(中英文)》 CAS CSCD 北大核心 2024年第6期510-520,I0001,I0002,共13页
The utilization of perovskite oxide materials as catalysts for the photodegradation of organic pollutants in water is a promising and rapidly advancing field.In this study,a series of La_(1−x)Ba_(x)CoO_(3)(x=0.2,0.3,0... The utilization of perovskite oxide materials as catalysts for the photodegradation of organic pollutants in water is a promising and rapidly advancing field.In this study,a series of La_(1−x)Ba_(x)CoO_(3)(x=0.2,0.3,0.4,0.5,0.6)catalysts with varying Ba doping ratios were synthesized using the citric acid complexation-hydrothermal synthesis combined method for the degradation of phenol under visible light irradiation.Among the synthesized catalysts,La_(0.5)Ba_(0.5)CoO_(3) exhibited the highest photocatalytic activity.In addition,the photocatalytic mechanism for La_(0.5)Ba_(0.5)CoO_(3) perovskite degradation of phenol was also discussed.The synthesized catalysts were characterized using XRD,SEM,FT-IR,XPS,MPMS and other characterization techniques.The results revealed that the diffraction peak intensity of La_(1−x)Ba_(x)CoO_(3) increased with higher Ba doping ratios,and the La_(0.4)Ba_(0.6)CoO_(3) exhibited the strongest diffraction peaks.The catalyst particle sizes ranged from 10 to 50 nm,and the specific surface area decreased with increasing Ba content.Additionally,the paramagnetic properties of La_(0.5)Ba_(0.5)CoO_(3) were similar to that of La_(0.4)Ba_(0.6)CoO_(3).The experimental results suggested that the incorporation of Ba could significantly improve the catalytic performance of La_(1−x)Ba_(x)CoO_(3) perovskites,promote electron transfer and favor to the generation of hydroxyl radicals(•OH),leading to the efficiently degradation of phenol. 展开更多
关键词 perovskite catalyst La_(1−x)Ba_(x)CoO_(3) PHOTOCATALYSIS phenol degradation mechanism
在线阅读 下载PDF
基于TiO2/Perovskite/P3HT结构的n-i-p型钙钛矿电池的电极界面优化与器件性能
17
作者 贾晓瑞 骆群 +4 位作者 张连萍 窦军彦 杨永珍 马昌期 刘旭光 《太原理工大学学报》 北大核心 2017年第6期893-900,共8页
以TiO_2/钙钛矿(PVSK)/P3HT的n-i-p型钙钛矿电池作为研究对象,研究了TiO_2薄膜退火温度对TiO_2薄膜的结晶性、基于此的钙钛矿薄膜的形貌以及光伏器件性能的影响,比较了P3HT的掺杂以及不同批次P3HT材料对钙钛矿太阳能电池器件性能的影响... 以TiO_2/钙钛矿(PVSK)/P3HT的n-i-p型钙钛矿电池作为研究对象,研究了TiO_2薄膜退火温度对TiO_2薄膜的结晶性、基于此的钙钛矿薄膜的形貌以及光伏器件性能的影响,比较了P3HT的掺杂以及不同批次P3HT材料对钙钛矿太阳能电池器件性能的影响。结果表明:TiO_2薄膜的退火工艺及P3HT的批次对器件性能影响较大。TiO_2薄膜的制备工艺设为退火温度为300℃,退火时间为45min,提高TiO_2的退火温度到500℃,钙钛矿太阳能电池的效率可提高到11.27%.通过优化钙钛矿薄膜厚度为190nm,制备得到光电转换效率为6.77%的钙钛矿薄膜光伏电池。基于低温TiO_2为电子传输层、掺杂P3HT为空穴传输层的器件性能为开路电压VOC=0.98V,短路电流J_(SC)=19.94mA/cm^2,填充因子f_F=0.42,转换效率η(PCE)=8.18%.TiO_2电子传输层和P3HT空穴传输层的系统优化对制备高性能n-i-p结构钙钛矿电池具有重要意义。 展开更多
关键词 钙钛矿太阳能电池 n-i-p结构器件 TiO2电子传输层 P3HT空穴传输层
在线阅读 下载PDF
Tunable Radioluminescence Perovskite Nanocrystal Scintillators
18
作者 LI Lin 《材料导报》 EI CAS CSCD 北大核心 2018年第23期I0001-I0002,共2页
In recent years, the increasing demand of various fields of radiation detection materials has led to intensive researches in scintillation materials 1-2]. The scintillators can absorb high-energy X-ray photons and the... In recent years, the increasing demand of various fields of radiation detection materials has led to intensive researches in scintillation materials 1-2]. The scintillators can absorb high-energy X-ray photons and then convert them into low-energy visible photons, which are widely applied in radiation monitoring, security detection, X-ray astronomy and medical radiology 3"l]. 展开更多
关键词 TUNABLE RADIOLUMINESCENCE perovskite Nanocrystal SCINTILLATORS
在线阅读 下载PDF
Perovskite Light-emitting Diodes with Record High EQE of 20.7% and ECE of 18.6%
19
作者 ZHANG Hongjian ZHU Jixin 《材料导报》 EI CAS CSCD 北大核心 2019年第2期203-204,共2页
Light-emitting diodes(LEDs)have wide applications in the areaof lighting,medical devices,display screens,etc.Owing to theexcellent optoelectronic properties and the facile solution proces-sing methods,organometal hali... Light-emitting diodes(LEDs)have wide applications in the areaof lighting,medical devices,display screens,etc.Owing to theexcellent optoelectronic properties and the facile solution proces-sing methods,organometal halide perovskites are extensively stu-died and proved to be promising light.emitting materials to fabri-cate LED devices[1-2].Generally,nonradiative recombination andlight trapping are two main factors to impede the efficiency en-hancement of LEDs,which are more serious in perovskite mate-rials for the high refractive index. 展开更多
关键词 perovskite light EMITTING DIODE EQE ECE
在线阅读 下载PDF
In-situ Growth of Conformal SnO_(2) Layers for Efficient Perovskite Solar Cells
20
作者 LIU Suolan LUAN Fuyuan +3 位作者 WU Zihua SHOU Chunhui XIE Huaqing YANG Songwang 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第12期1397-1403,I0009,共8页
Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences... Significant progress has recently been made in enhancing the power conversion efficiency(PCE)of perovskite solar cells(PSCs).The electron transport layer(ETL),as an essential component of PSCs,significantly influences the performance of devices.Traditional spin-coating method for preparing the ETL fails to fully cover the cusp of FTO transparent conductive glass substrate,leading to direct contact between perovskite film and FTO substrate,which induces charge recombination and reduces the performance of PSCs.To address this issue,an in-situ growth method was proposed to prepare conformal SnO_(2) films on FTO glass substrates in this study.The resulting SnO_(2) films are not only dense and uniform,fully covering the cusp of the FTO glass substrates and reducing the contact area between the FTO substrates and the perovskite films,but also facilitating the formation of perovskite films with large grain sizes.Moreover,the conformal SnO_(2) films can improve the charge extraction at the SnO_(2)/perovskite interface,reduce the trap density and trap-assisted recombination in PSCs,and thus enhance the PCE of PSCs.Through comparative experiments,it is found that the PSCs with in-situ grown SnO_(2) films show an improved PCE of 21.97%,which significantly increased compared to that with spin-coated SnO_(2) films(20.93%).All above data demonstrate that the as-prepared SnO_(2) film can serve as an ideal ETL.It is worth mentioning that this method avoids the use of corrosive hydrochloric acid and toxic thioglycolic acid,and it can also be extended to ITO flexible transparent conductive substrates in the future. 展开更多
关键词 perovskite solar cell conformal SnO_(2)film in-situ growth
在线阅读 下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部