期刊文献+
共找到218篇文章
< 1 2 11 >
每页显示 20 50 100
基于自适应反馈机制的小差异化图像纹理特征信息数据检索
1
作者 刘洋 毛克明 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期73-81,共9页
针对小差异化图像纹理相似度和噪声等因素导致纹理特征挖掘效果较差的问题,设计一种自适应反馈结合局部二值机制的小差异化图像纹理特征挖掘方法.使用规范割策略将图像数据各点拟作节点,使用节点间的连接线权重计算2点的相似度,采用支... 针对小差异化图像纹理相似度和噪声等因素导致纹理特征挖掘效果较差的问题,设计一种自适应反馈结合局部二值机制的小差异化图像纹理特征挖掘方法.使用规范割策略将图像数据各点拟作节点,使用节点间的连接线权重计算2点的相似度,采用支持向量机训练图像属性参数分类图像属性,进一步归纳图像类别.运用跳跃连接方法传输图像数据,将数据引入卷积神经网络剔除图像噪声.将中心点像素值当作反馈因子,创建自适应反馈判定条件,利用局部二值模式实现小差异化图像纹理特征挖掘.在MATLAB平台进行试验,从卷积神经网络收敛性、图像频谱纹理单元数、平均准确率、图像数据匹配度等方面进行了分析,分析结果表明:随着迭代次数不断增加,精度损失逐渐降低,基本收敛到稳定值,达到了预期训练效果;所提出方法挖掘的图像频谱纹理单元数3800个以上,更贴合人眼视觉信息;平均准确率为0.87,准确率@1、准确率@5和准确率@10的平均值分别为0.90、0.84和0.85;挖掘耗时低于5 s,图像数据匹配度高于90.3%,验证了所提出方法可在图像纹理特征识别操作中发挥应有作用. 展开更多
关键词 小差异化图像 纹理特征 数据挖掘 自适应反馈 属性分类 跳跃连接 局部二值模式 支持向量机
在线阅读 下载PDF
基于BPSO-PSO-LSSVM算法的上肢sEMG分类
2
作者 贠今天 苗冠 +1 位作者 李帅 耿梓敬 《科学技术与工程》 北大核心 2025年第18期7686-7692,共7页
作为与人体运动密切相关的生理信号,表面肌电(surface electromyography, sEMG)信号的解析在人机交互领域具有重要的作用。针对肌电信号分类效率和精度难以兼顾的问题,提出了一种特征筛选与分类器超参数优化相结合的上肢sEMG分类方法,... 作为与人体运动密切相关的生理信号,表面肌电(surface electromyography, sEMG)信号的解析在人机交互领域具有重要的作用。针对肌电信号分类效率和精度难以兼顾的问题,提出了一种特征筛选与分类器超参数优化相结合的上肢sEMG分类方法,该方法采用二进制粒子群优化(binary particle swarm optimization, BPSO)算法对特征进行筛选后,进一步采用粒子群优化(particle swarm optimization, PSO)算法调整最小二乘支持向量机(least squares support vector machine, LSSVM)的超参数。通过采集人上体4个部位的表面肌电信号并提取其中48维特征,对上肢常见的4种动作进行分类实验,结果表明,BPSO-PSO-LSSVM算法仅保留肌电数据的21维特征,得到的平均分类准确率达到97.54%,证明该方法可以有效筛选出用于上肢动作分类的最佳特征组合,并且提高运动分类的准确率。 展开更多
关键词 表面肌电信号 特征选择 二进制粒子群优化 粒子群优化 动作分类 最小二乘支持向量机
在线阅读 下载PDF
基于改进的LBP和Gabor滤波器的纹理特征提取方法 被引量:1
3
作者 陈佳明 陈旭 +1 位作者 任硕 邸宏伟 《南京信息工程大学学报》 北大核心 2025年第2期227-234,共8页
纹理提取是计算机视觉领域的一项重要任务,纹理提取的质量对纹理分类的准确性具有关键影响.传统单一的纹理提取方法难以准确描述各类纹理的特征.本文提出一种基于改进的位置局部二值模式(IPLBP)和Gabor滤波器的纹理提取算法,其中,改进... 纹理提取是计算机视觉领域的一项重要任务,纹理提取的质量对纹理分类的准确性具有关键影响.传统单一的纹理提取方法难以准确描述各类纹理的特征.本文提出一种基于改进的位置局部二值模式(IPLBP)和Gabor滤波器的纹理提取算法,其中,改进算法在局部二值模式(LBP)的基础上通过提取纹理位置信息来提高纹理描述能力.利用改进后的LBP算法提取局部纹理信息,Gabor滤波器提取全局纹理信息,将两种特征信息进行融合后使用支持向量机(SVM)进行分类.实验结果表明,所提出的算法在纹理材质分类任务上展现出了良好的性能.相比传统的LBP算法,该算法能够更准确地捕捉不同纹理特征之间的差异. 展开更多
关键词 纹理提取 局部二值模式 GABOR滤波器 支持向量机
在线阅读 下载PDF
结合H-S变换和BSVM的高压输电线路故障识别 被引量:8
4
作者 肖贤 周步祥 +2 位作者 林楠 王献林 张勤 《电力系统及其自动化学报》 CSCD 北大核心 2015年第2期70-76,共7页
针对高压输电线路故障识别元件易受系统工况和一些不确定因素影响的问题,提出一种新的故障分类模型。此模型主要由3个二分类支持向量机分类器、1个零序分量判别器和1个逻辑判断器构成。对三相电流进行H-S变换得到模时频矩阵值,用于对支... 针对高压输电线路故障识别元件易受系统工况和一些不确定因素影响的问题,提出一种新的故障分类模型。此模型主要由3个二分类支持向量机分类器、1个零序分量判别器和1个逻辑判断器构成。对三相电流进行H-S变换得到模时频矩阵值,用于对支持向量机分类器的训练;对零序电流进行小波变换计算低频能量,用于零序分量判别器识别;最后逻辑判断器根据二者的输出遍历逻辑表做出判断。通过仿真实验,此模型在各种干扰和工况变化的情况下都能保持良好的性能。 展开更多
关键词 高压线路故障识别 二分类支持向量机 双曲S变换 零序分量 逻辑判断
在线阅读 下载PDF
基于IPSO-BSVM的小样本数据不均衡下的设备健康预测研究 被引量:8
5
作者 位晶晶 刘勤明 +1 位作者 叶春明 陈翔 《计算机应用研究》 CSCD 北大核心 2021年第4期1119-1122,1127,共5页
针对设备的健康预测缺乏大量样本且存在样本不均衡问题,提出基于改进粒子群优化算法优化均衡支持向量机(IPSO-BSVM)的健康预测模型。首先,提出动态非线性惯性权重对PSO进行优化;其次,提出了一种非线性多分类均衡支持向量机BSVM,以减小... 针对设备的健康预测缺乏大量样本且存在样本不均衡问题,提出基于改进粒子群优化算法优化均衡支持向量机(IPSO-BSVM)的健康预测模型。首先,提出动态非线性惯性权重对PSO进行优化;其次,提出了一种非线性多分类均衡支持向量机BSVM,以减小由于样本量不均衡引起的误差;然后利用改进后的PSO对BSVM参数进行优化;最后利用建立的IPSO-BSVM模型对设备进行状态识别及剩余寿命预测。仿真结果表明,提出方法能够有效解决小样本数据不均衡下的设备健康预测问题。 展开更多
关键词 状态识别 剩余寿命预测 小样本 bsvm PSO
在线阅读 下载PDF
基于特征提取和图像分类的螺旋网疵点自动检测
6
作者 王博润 张宁 卢雨正 《现代纺织技术》 北大核心 2024年第1期36-44,共9页
为了解决当前螺旋网人工疵点检测效率低、误检率高等问题,提出了一种基于分类思想的螺旋网疵点检测方法。对螺旋网图像提取多模式多尺度的LBP特征,充分表征螺旋网图像的信息,通过构建支持向量机(Support vector machine,SVM)分类器实现... 为了解决当前螺旋网人工疵点检测效率低、误检率高等问题,提出了一种基于分类思想的螺旋网疵点检测方法。对螺旋网图像提取多模式多尺度的LBP特征,充分表征螺旋网图像的信息,通过构建支持向量机(Support vector machine,SVM)分类器实现螺旋网疵点自动检测。结果表明:对于螺旋网疵点图像的局部二值模式(Local binary pattern,LBP)特征,采样半径为2,采样点个数为8时的均匀模式LBP的分类准确率优于其他模式和尺度的LBP,达到了100%,检测速度为0.48 s/张。通过对比不同的特征提取方法和分类器,验证了该文方法对于螺旋网疵点自动检测的适用性,可以实现纺织企业中螺旋网的自动化检测。 展开更多
关键词 高分子滤网 机器视觉 疵点检测 局部二值模式 支持向量机
在线阅读 下载PDF
全矢融合的二元PELCD样本熵列车故障诊断
7
作者 郑航 李刚 李德仓 《噪声与振动控制》 CSCD 北大核心 2024年第3期125-131,共7页
长期高速运行的服役状态会造成高速列车转向架关键部件性能蜕化甚至发生故障等情况,所导致的安全事件将造成严重的经济损失甚至人员伤亡。考虑到高速列车振动信号的特性,将部分集成的局部特征尺度分解方法拓展至二元信号处理领域,同时... 长期高速运行的服役状态会造成高速列车转向架关键部件性能蜕化甚至发生故障等情况,所导致的安全事件将造成严重的经济损失甚至人员伤亡。考虑到高速列车振动信号的特性,将部分集成的局部特征尺度分解方法拓展至二元信号处理领域,同时结合全矢谱理论对同阶分量信号进行信息融合,得到更加完备的数据特征,并对融合后的数据进行样本熵特征提取,得到列车的故障特征;采用灰狼优化算法对支持向量机进行参数寻优,通过实验对比单一故障工况、复合故障工况以及部件性能退化下的故障识别率,验证所提方法的有效性、优越性。 展开更多
关键词 故障诊断 二元部分集成的局部特征尺度分解方法 全矢理论 灰狼优化算法 支持向量机
在线阅读 下载PDF
基于特征选择和聚类的动态选择性集成模型
8
作者 徐雨芯 曹建军 +2 位作者 王保卫 翁年凤 顾楚梅 《广西科学》 北大核心 2024年第5期1002-1010,共9页
为提高辐射源个体识别的准确率,降低动态选择性集成的计算复杂度,本文提出基于特征选择和聚类的动态选择性集成模型(FSC-DES)。利用归一化皮尔森相关系数法度量不同基分类器间混淆矩阵的差异性,以各基分类器准确率最高及基分类器间差异... 为提高辐射源个体识别的准确率,降低动态选择性集成的计算复杂度,本文提出基于特征选择和聚类的动态选择性集成模型(FSC-DES)。利用归一化皮尔森相关系数法度量不同基分类器间混淆矩阵的差异性,以各基分类器准确率最高及基分类器间差异性最大为目标,得到基分类器集合和对应特征子集集合。利用聚类方法将验证集划分为若干类,以验证集分类准确率最高为目标,为每簇验证集选择最优的基分类器子集和对应的特征子集。在测试阶段,对测试集进行聚类,仅比较每簇测试样本和每簇验证样本数据分布的最大均值差异值,减少运算时间。每簇测试样本在相似度最高的验证集所对应的特征子集集合和基分类器子集下进行预测,并根据不同权重基分类器预测结果的加权和进行最终决策。为验证方法的必要性和优越性,将本文方法与传统集成学习方法进行对比,结果表明,本文方法在信噪比分别为10、5 dB的条件下,分类准确率均提升约5%,具有更好的分类效果和泛化性能。 展开更多
关键词 特征选择 动态选择性集成 支持向量机 蚁群优化算法 辐射源个体识别 二分类问题
在线阅读 下载PDF
基于有限元与改进SVM的飞行器结构无损检测模型设计
9
作者 朱淑云 曾萍萍 《现代电子技术》 北大核心 2024年第20期136-140,共5页
针对传统飞行器结构无损检测中存在的准确度低且易造成二次破坏等问题,以有限元仿真为数据基础,提出一种基于改进支持向量机的飞行器结构无损检测模型。该模型使用主元分析法对数据主特征进行分析,解决了有限元仿真数据维度高的问题;利... 针对传统飞行器结构无损检测中存在的准确度低且易造成二次破坏等问题,以有限元仿真为数据基础,提出一种基于改进支持向量机的飞行器结构无损检测模型。该模型使用主元分析法对数据主特征进行分析,解决了有限元仿真数据维度高的问题;利用二叉树的思想改进了传统支持向量机,使其具备多特征分类能力,并对多数据特征加以分类,提高了模型的收敛准确度;还通过引入粒子群算法优化多分类向量机的惩罚因子及核函数参数。实验测试结果表明,所提模型可实现分类器参数的性能优化,平均分类准确率较对比算法提升了约1.4%。 展开更多
关键词 飞行器结构 无损检测 支持向量机 有限元仿真 主元分析法 粒子群算法 主特征分析 二叉树
在线阅读 下载PDF
基于最优二叉树支持向量机的蜜柚叶部病害识别 被引量:38
10
作者 张建华 孔繁涛 +4 位作者 李哲敏 吴建寨 陈威 王盛威 朱孟帅 《农业工程学报》 EI CAS CSCD 北大核心 2014年第19期222-231,共10页
为了提高蜜柚叶部中晚期病害的识别准确率,确保蜜柚叶部病害对症施药与病害防治的效果,该文提出了一种基于最优二叉树支持向量机(support vector machine,SVM)的蜜柚叶部病害识别方法,该方法首先将蜜柚叶部病害图像转换为B分量、2G-R-B... 为了提高蜜柚叶部中晚期病害的识别准确率,确保蜜柚叶部病害对症施药与病害防治的效果,该文提出了一种基于最优二叉树支持向量机(support vector machine,SVM)的蜜柚叶部病害识别方法,该方法首先将蜜柚叶部病害图像转换为B分量、2G-R-B分量、(G+R+B)/3分量以及YIQ颜色模型中的Q分量的4个灰度图像,再利用5尺度8方向的Gabor小波分别与4个分量灰度图像进行卷积运算,获得5个尺度下不同方向的幅值均值作为病害的特征向量,并结合提出的最优二叉树支持向量机病害识别模型,对黄斑病、炭疽病、疮痂病、煤烟病等4种蜜柚叶部病害进行分类识别。通过交叉验证的方法进行分类识别测试,结果表明:黄斑病、炭疽病、疮痂病、煤烟病识别准确率分别为90%、96.66%、93.33%、96.66%,平均识别率达到94.16%,并将该方法与BP神经网络、一对一SVM与一对多SVM进行比较,试验结果表明该方法可有效识别4种蜜柚叶部病害,在训练时间和识别精度上都优于其他3种方法。该方法可为蜜柚病害准确识别与防治提供有效的技术支持。 展开更多
关键词 病害 识别 图像处理 GABOR小波 最优二叉树 支持向量机 蜜柚叶部
在线阅读 下载PDF
基于双支持向量机的偏二叉树多类分类算法 被引量:28
11
作者 谢娟英 张兵权 汪万紫 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期354-363,共10页
提出一种基于双支持向量机的偏二叉树多类分类算法,偏二叉树双支持向量机多类分类算法.该算法综合了二叉树支持向量机和双支持向量机的优势,实现了在不降低分类性能的前提下,大大缩短训练时间.理论分析和UCI(University of California I... 提出一种基于双支持向量机的偏二叉树多类分类算法,偏二叉树双支持向量机多类分类算法.该算法综合了二叉树支持向量机和双支持向量机的优势,实现了在不降低分类性能的前提下,大大缩短训练时间.理论分析和UCI(University of California Irvine)机器学习数据库数据集上的实验结果共同证明,偏二叉树双支持向量机多类分类算法在训练时间上具有绝对的优势,尤其在处理稍大数据集的多类分类问题时,这一优势尤为突出;实验仿真结果还证明,在采用非线性核时,该算法取得了比基于经典支持向量机的一对其余多类分类算法及二叉树支持向量机更好的分类效果;同时该算法还解决了后两种算法可能存在的样本不平衡问题,以及基于经典支持向量机的一对其余多类分类算法可能存在的不可分区域问题. 展开更多
关键词 双支持向量机 偏二叉树支持向量机 支持向量机 多类分类
在线阅读 下载PDF
一种新的二叉树多类支持向量机算法 被引量:50
12
作者 唐发明 王仲东 陈绵云 《计算机工程与应用》 CSCD 北大核心 2005年第7期24-26,共3页
采用二叉树结构对多个二值支持向量机(SVM)子分类器组合,可实现多类问题的分类,并且还可克服传统多类SVM算法存在的不可分区域的情况。针对现有二叉树多类SVM方法未采用有效的二叉树生成算法,该文采用聚类分析中的类距离思想,提出了一... 采用二叉树结构对多个二值支持向量机(SVM)子分类器组合,可实现多类问题的分类,并且还可克服传统多类SVM算法存在的不可分区域的情况。针对现有二叉树多类SVM方法未采用有效的二叉树生成算法,该文采用聚类分析中的类距离思想,提出了一种新的基于二叉树的多类SVM分类方法。实验结果表明,新算法具有较高的推广性能。 展开更多
关键词 多类支持向量机 聚类 二叉树 多类分类
在线阅读 下载PDF
一种基于改进的支持向量机的多类文本分类方法 被引量:28
13
作者 应伟 王正欧 安金龙 《计算机工程》 EI CAS CSCD 北大核心 2006年第16期74-76,共3页
提出了一种基于二叉树、预抽取支持向量机及循环迭代算法的改进的支持向量机(SVM)的多类文本分类方法,与现有的多类分类SVM算法相比,该方法具有较高的计算效率。给出了具体实现过程并将其用于文本分类中,实验表明该算法用于文本分类的... 提出了一种基于二叉树、预抽取支持向量机及循环迭代算法的改进的支持向量机(SVM)的多类文本分类方法,与现有的多类分类SVM算法相比,该方法具有较高的计算效率。给出了具体实现过程并将其用于文本分类中,实验表明该算法用于文本分类的有效性及其高效率。 展开更多
关键词 文本分类 支持向量机 迭代算法 二叉树
在线阅读 下载PDF
SVM多类分类器在车牌字符识别中的应用 被引量:22
14
作者 王伟 马永强 彭强 《计算机工程与设计》 CSCD 北大核心 2011年第9期3166-3169,共4页
为解决普通支持向量机多类分类器对车牌字符识别准确率低、速度慢等问题,研究了基于支持向量机二叉分类树的车牌字符识别算法。根据车牌字符的结构特征提出了利于字符分类的粗像素特征提取方案,并对字符进行相应的特征提取,通过KL变换... 为解决普通支持向量机多类分类器对车牌字符识别准确率低、速度慢等问题,研究了基于支持向量机二叉分类树的车牌字符识别算法。根据车牌字符的结构特征提出了利于字符分类的粗像素特征提取方案,并对字符进行相应的特征提取,通过KL变换对生成的特征向量进行降维处理以提高字符识别速度,最后利用Fisher判别准则构造支持向量机二叉分类树,保证每类字符均具有最大可分离性,提高了字符识别率。对车牌字符集进行了识别测试,实验结果表明了该算法的可行性和有效性。 展开更多
关键词 支持向量机 特征向量 字符识别 KL变换 二叉树
在线阅读 下载PDF
改进二叉树支持向量机及其故障诊断方法研究 被引量:30
15
作者 赵海洋 徐敏强 王金东 《振动工程学报》 EI CSCD 北大核心 2013年第5期764-770,共7页
针对层次结构对二叉树支持向量机分类性能影响较大的问题,提出了一种改进的二叉树支持向量机层次结构构建方法。以类内样本平均距离和类间样本平均距离建立带权值的可分性测度,将类间距离大且类内样本分布广的类最先分离,并提出了权值... 针对层次结构对二叉树支持向量机分类性能影响较大的问题,提出了一种改进的二叉树支持向量机层次结构构建方法。以类内样本平均距离和类间样本平均距离建立带权值的可分性测度,将类间距离大且类内样本分布广的类最先分离,并提出了权值选取准则和算法步骤。利用标准数据集,通过与不同多类算法比较,验证了改进的二叉树支持向量机的优越性。以往复压缩机传动机构为研究对象,基于多重分形和奇异值分解提取故障特征,应用改进的二叉树支持向量机实现了常见故障的准确诊断。 展开更多
关键词 故障诊断 往复压缩机 二叉树 支持向量机 可分性测度
在线阅读 下载PDF
基于改进二叉树多分类SVM的焊缝缺陷分类方法 被引量:13
16
作者 罗爱民 沈才洪 +1 位作者 易彬 李坤 《焊接学报》 EI CAS CSCD 北大核心 2010年第7期51-54,共4页
为了进一步提高焊缝缺陷识别精度,定义了一种类分离度,提出了改进二叉树多分类SVM的焊缝缺陷分类方法.在焊缝缺陷分类时,计算每个类的类分离度,将类分离度最小的两个类进行训练得到SVM子分类器SVM_1,并将这两个类合并成一个新簇G;同理... 为了进一步提高焊缝缺陷识别精度,定义了一种类分离度,提出了改进二叉树多分类SVM的焊缝缺陷分类方法.在焊缝缺陷分类时,计算每个类的类分离度,将类分离度最小的两个类进行训练得到SVM子分类器SVM_1,并将这两个类合并成一个新簇G;同理对新簇G和剩下的k-2类进行类分离度的评估,将类分离度最小的两类训练得到SVM子分类器SVM_2,并合并成新簇H,直至得到k-1个SVM分类器,训练结束得到良好的二叉树的分类结构.利用聚类生成好的优化二叉树SVM进行判别焊接缺陷.结果表明,新算法具有高的分类精度和推广能力. 展开更多
关键词 支持向量机 类分离度 二叉树 焊缝缺陷识别
在线阅读 下载PDF
非平衡二叉树多类支持向量机分类方法 被引量:17
17
作者 夏思宇 潘泓 金立左 《计算机工程与应用》 CSCD 北大核心 2009年第17期167-169,共3页
提出一种新的基于非平衡二叉树的支持向量机多类别分类方法。该方法通过分析已知类别样本的先验分布知识,构造一个二叉决策树,使容易区分的类别从根节点开始逐层分割出来,以获得较高的推广能力。该方法解决了传统分类算法中所存在的不... 提出一种新的基于非平衡二叉树的支持向量机多类别分类方法。该方法通过分析已知类别样本的先验分布知识,构造一个二叉决策树,使容易区分的类别从根节点开始逐层分割出来,以获得较高的推广能力。该方法解决了传统分类算法中所存在的不可分区域问题,在训练时只需构造N-1个SVM分类器,而测试时的判决次数小于N。将该方法应用于人脸识别实验。测试结果表明,与传统分类算法相比,该方法的平均分类时间是最少的。 展开更多
关键词 支持向量机 二叉树 人脸识别
在线阅读 下载PDF
改进的二叉树支持向量机多类分类算法研究 被引量:14
18
作者 刘健 刘忠 熊鹰 《计算机工程与应用》 CSCD 北大核心 2010年第33期117-120,共4页
为解决现有支持向量机多类分类算法的不可分区域问题及提高泛化能力,提出一种改进的基于二叉树结构的支持向量机多类分类算法。该算法基于帕累托原则,将类超球体半径分解成核心半径和最小半径,通过两者加权计算最终的类超球体决策半径,... 为解决现有支持向量机多类分类算法的不可分区域问题及提高泛化能力,提出一种改进的基于二叉树结构的支持向量机多类分类算法。该算法基于帕累托原则,将类超球体半径分解成核心半径和最小半径,通过两者加权计算最终的类超球体决策半径,并以此半径大小为依据生成二叉树结构。该算法避免了测量所引入的误差,使得样本分布广散布小的类处于二叉树的上层节点,从而获得更大的划分空间。实验结果表明:该算法具有一定的适应能力,能更好地解决实际多类分类问题。 展开更多
关键词 多类别 支持向量机 二叉树 帕累托原则
在线阅读 下载PDF
基于支持向量机的半导体生产线动态调度方法 被引量:11
19
作者 马玉敏 乔非 +2 位作者 陈曦 田阔 伍星浩 《计算机集成制造系统》 EI CSCD 北大核心 2015年第3期733-739,共7页
为了快速合理地选择调度策略,研究了一种半导体生产线动态调度策略选择方法。该方法以历史数据为基础,选取支持向量机为数据挖掘工具,采用二进制粒子群优化算法对生产属性(特征)子集进行寻优,获得基于支持向量机的动态调度策略分类模型... 为了快速合理地选择调度策略,研究了一种半导体生产线动态调度策略选择方法。该方法以历史数据为基础,选取支持向量机为数据挖掘工具,采用二进制粒子群优化算法对生产属性(特征)子集进行寻优,获得基于支持向量机的动态调度策略分类模型。对于任意给定的生产状态,通过该模型,能实时地获取当前生产状态下近似最优的调度策略。在调度策略评价中,选用了基于功效函数与熵权法的多目标评价方法,以扩展该方法的应用范围。在某实际硅片生产线上验证了所提动态调度方法的有效性。 展开更多
关键词 动态调度 特征选择 二进制粒子群优化算法 支持向量机
在线阅读 下载PDF
基于GLCM和LBP的局部放电灰度图像特征提取 被引量:19
20
作者 赵磊 朱永利 +3 位作者 贾亚飞 张宁 郭小红 袁亮 《电测与仪表》 北大核心 2017年第1期77-82,共6页
针对变压器局部放电模式识别中传统统计谱图特征提取维数高、识别率差等问题,提出基于灰度共生矩阵和局部二值模式的局部放电灰度图像纹理特征提取方法。该方法从宏观角度将灰度图像转化为灰度共生矩阵并获取其8维特征,从微观角度计算... 针对变压器局部放电模式识别中传统统计谱图特征提取维数高、识别率差等问题,提出基于灰度共生矩阵和局部二值模式的局部放电灰度图像纹理特征提取方法。该方法从宏观角度将灰度图像转化为灰度共生矩阵并获取其8维特征,从微观角度计算邻域像素相对灰度响应并获取其10维特征量。搭建四种局部放电实验模型,通过脉冲电流法采集局部放电信号;结合两类特征,以支持向量机作为分类器来识别放电类型并用传统特征提取方法作为对比。结果表明利用该方法提取灰度图像特征在避免特征灾难的同时仍有较高识别率,能有效识别四种放电模型,验证了该方法的有效性。 展开更多
关键词 变压器局部放电 特征提取 灰度共生矩阵 局部二值模式 支持向量机
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部