期刊文献+
共找到521篇文章
< 1 2 27 >
每页显示 20 50 100
Optimization of the seismic processing phase-shift plus finite-difference migration operator based on a hybrid genetic and simulated annealing algorithm 被引量:2
1
作者 Luo Renze Huang Yuanyi +2 位作者 Liang Xianghao Luo Jun Cao Ying 《Petroleum Science》 SCIE CAS CSCD 2013年第2期190-194,共5页
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome... Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation. 展开更多
关键词 Migration operator phase-shift plus finite-difference hybrid algorithm genetic andsimulated annealing algorithm optimization coefficient
在线阅读 下载PDF
APPLICATION OF HYBRID GENETIC ALGORITHM IN AEROELASTIC MULTIDISCIPLINARY DESIGN OPTIMIZATION OF LARGE AIRCRAFT 被引量:2
2
作者 唐长红 万志强 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期109-117,共9页
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th... The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm. 展开更多
关键词 aeroelasticity multidisciplinary design optimization genetic/gradient-based hybrid algorithm large aircraft
在线阅读 下载PDF
Nonlinear amplitude inversion using a hybrid quantum genetic algorithm and the exact zoeppritz equation 被引量:4
3
作者 Ji-Wei Cheng Feng Zhang Xiang-Yang Li 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1048-1064,共17页
The amplitude versus offset/angle(AVO/AVA)inversion which recovers elastic properties of subsurface media is an essential tool in oil and gas exploration.In general,the exact Zoeppritz equation has a relatively high a... The amplitude versus offset/angle(AVO/AVA)inversion which recovers elastic properties of subsurface media is an essential tool in oil and gas exploration.In general,the exact Zoeppritz equation has a relatively high accuracy in modelling the reflection coefficients.However,amplitude inversion based on it is highly nonlinear,thus,requires nonlinear inversion techniques like the genetic algorithm(GA)which has been widely applied in seismology.The quantum genetic algorithm(QGA)is a variant of the GA that enjoys the advantages of quantum computing,such as qubits and superposition of states.It,however,suffers from limitations in the areas of convergence rate and escaping local minima.To address these shortcomings,in this study,we propose a hybrid quantum genetic algorithm(HQGA)that combines a self-adaptive rotating strategy,and operations of quantum mutation and catastrophe.While the selfadaptive rotating strategy improves the flexibility and efficiency of a quantum rotating gate,the operations of quantum mutation and catastrophe enhance the local and global search abilities,respectively.Using the exact Zoeppritz equation,the HQGA was applied to both synthetic and field seismic data inversion and the results were compared to those of the GA and QGA.A number of the synthetic tests show that the HQGA requires fewer searches to converge to the global solution and the inversion results have generally higher accuracy.The application to field data reveals a good agreement between the inverted parameters and real logs. 展开更多
关键词 Nonlinear inversion AVO/AVA inversion hybrid quantum genetic algorithm(HQGA)
在线阅读 下载PDF
Algorithm for solving the bi-level decision making problem with continuous variables in the upper level based on genetic algorithm 被引量:2
4
作者 肖剑 《Journal of Chongqing University》 CAS 2005年第1期59-62,共4页
Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algor... Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algorithm is compared with Monte Carlo simulated annealing algorithm, and its feasibility and effectiveness are verified with two calculating examples. 展开更多
关键词 bi-level decision making Monte Carlo simulated annealing genetic algorithms
在线阅读 下载PDF
The RHSA Strategy for the Allocation of Outbound Containers Based on the Hybrid Genetic Algorithm 被引量:1
5
作者 Meilong Le Hang Yu 《Journal of Marine Science and Application》 2013年第3期344-350,共7页
Secure storage yard is one of the optimal core goals of container transportation;thus,making the necessary storage arrangements has become the most crucial part of the container terminal management systems(CTMS).Thi... Secure storage yard is one of the optimal core goals of container transportation;thus,making the necessary storage arrangements has become the most crucial part of the container terminal management systems(CTMS).This paper investigates a random hybrid stacking algorithm(RHSA) for outbound containers that randomly enter the yard.In the first stage of RHSA,the distribution among blocks was analyzed with respect to the utilization ratio.In the second stage,the optimization of bay configuration was carried out by using the hybrid genetic algorithm.Moreover,an experiment was performed to test the RHSA.The results show that the explored algorithm is useful to increase the efficiency. 展开更多
关键词 random hybrid stacking algorithm genetic algorithm container yard operation container stowage plan handling cost utilization ratio
在线阅读 下载PDF
Multicast Routing Based on Hybrid Genetic Algorithm
6
作者 曹元大 蔡刿 《Journal of Beijing Institute of Technology》 EI CAS 2005年第2期130-134,共5页
A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorith... A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability. 展开更多
关键词 multicast routing hybrid genetic algorithm(HGA) simulation algorithm Steiner tree
在线阅读 下载PDF
Identification of Magnetic Bearing Stiffness and Damping Based on Hybrid Genetic Algorithm
7
作者 Zhao Chen Zhou Jin +2 位作者 Xu Yuanping Di Long Ji Minlai 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第2期211-219,共9页
Identifying the stiffness and damping of active magnetic bearings(AMBs)is necessary since those parameters can affect the stability and performance of the high-speed rotor AMBs system.A new identification method is pr... Identifying the stiffness and damping of active magnetic bearings(AMBs)is necessary since those parameters can affect the stability and performance of the high-speed rotor AMBs system.A new identification method is proposed to identify the stiffness and damping coefficients of a rotor AMB system.This method combines the global optimization capability of the genetic algorithm(GA)and the local search ability of Nelder-Mead simplex method.The supporting parameters are obtained using the hybrid GA based on the experimental unbalance response calculated through the transfer matrix method.To verify the identified results,the experimental stiffness and damping coefficients are employed to simulate the unbalance responses for the rotor AMBs system using the finite element method.The close agreement between the simulation and experimental data indicates that the proposed identified algorithm can effectively identify the AMBs supporting parameters. 展开更多
关键词 magnetic bearing hybrid genetic algorithm bearing parameters finite element model
在线阅读 下载PDF
A Multi-Objective Hybrid Genetic Based Optimization for External Beam Radiation 被引量:3
8
作者 李国丽 宋钢 +2 位作者 吴宜灿 张建 王群京 《Plasma Science and Technology》 SCIE EI CAS CSCD 2006年第2期234-236,共3页
A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated an... A multi-objective hybrid genetic based optimization algorithm is proposed according to the multi-objective property of inverse planning. It is based on hybrid adaptive genetic algorithm which combines the simulated annealing, uses adaptive crossover and mutation, and adopts niched tournament selection. The result of the test calculation demonstrates that an excellent converging speed can be achieved using this approach. 展开更多
关键词 inverse planning multi-objective optimization genetic algorithm hybrid
在线阅读 下载PDF
Robot stereo vision calibration method with genetic algorithm and particle swarm optimization 被引量:1
9
作者 汪首坤 李德龙 +1 位作者 郭俊杰 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2013年第2期213-221,共9页
Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ... Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation. 展开更多
关键词 robot stereo vision camera calibration genetic algorithm (GA) particle swarm opti-mization (PSO) hybrid intelligent optimization
在线阅读 下载PDF
Dynamic airspace sectorization via improved genetic algorithm 被引量:7
10
作者 Yangzhou Chen Hong Bi +1 位作者 Defu Zhang Zhuoxi Song 《Journal of Modern Transportation》 2013年第2期117-124,共8页
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ... This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic. 展开更多
关键词 Dynamic airspace sectorization (DAS) Improved genetic algorithm (iGA) Graph model Multiple populations hybrid coding Sector constraints
在线阅读 下载PDF
需求可拆分的多品种库存路径优化问题
11
作者 边展 张倩 《工业工程》 2025年第2期20-27,共8页
针对需求可拆分的多品种库存路径问题(multi-product inventory routing problem with split deliveries,MIRPSD),提出一种基于最小化库存持有成本、运输成本和车辆使用总成本的车辆路径优化模型。同时考虑每个客户的交货计划及每种货... 针对需求可拆分的多品种库存路径问题(multi-product inventory routing problem with split deliveries,MIRPSD),提出一种基于最小化库存持有成本、运输成本和车辆使用总成本的车辆路径优化模型。同时考虑每个客户的交货计划及每种货物的运输数量。设计混合遗传算法进行求解,引入扰动策略以提高搜索效率,并通过实验选取合适的参数。探讨了平均日需求量与车辆载重量的比值、单位库存持有成本对需求拆分策略及总配送成本的影响。多组算例试验表明,本文提出的模型和算法可有效解决该问题。当需求量服从正态分布且平均日需求量为车辆载重量的55%时,采用需求拆分策略的效果最佳。本研究拓展了库存路径问题的相关理论,既可为解决MIRPSD问题提供一种新思路,也可为物流企业的相关决策提供理论依据。 展开更多
关键词 车辆路径问题 库存路径问题 多品种 需求拆分 混合遗传算法 扰动策略
在线阅读 下载PDF
考虑零缓冲的预制生产线并行机调度研究
12
作者 阮雯欣 于淼 张铎 《工业工程》 2025年第2期98-109,共12页
为满足混凝土预制构件对提高生产效率和准时交付订单的需要,研究考虑混凝土预制构件并行机器生产调度的问题。现有混凝土预制构件生产过程中各工序均存在并行加工机器,且工序间没有单独的缓冲区域。因此本文提出一种零缓冲区情况下混凝... 为满足混凝土预制构件对提高生产效率和准时交付订单的需要,研究考虑混凝土预制构件并行机器生产调度的问题。现有混凝土预制构件生产过程中各工序均存在并行加工机器,且工序间没有单独的缓冲区域。因此本文提出一种零缓冲区情况下混凝土预制构件并行机器生产模型。首先,确定待加工构件以及对应的加工机器,并确定工序的关键时间点;其次,将选择并行机器的约束与零缓冲区影响后的时间约束结合,构建预制构件并行生产调度模型,并设计遗传粒子群混合算法(genetic algorithm-particle swarm optimization, GA-PSO)进行求解;最后,基于沈阳某混凝土预制构件厂的生产数据对所提模型进行数值实验分析。结果表明,GA-PSO算法结合GA算法和PSO算法的优势性能,实现高效的优化搜索,零缓冲约束的预制构件并行机生产模型生产的完工时间由78.98 h缩短至73.18 h,机器利用率提升了19.79%,验证了模型对实际排产的有效性以及算法具有较好的稳定性和适用性。 展开更多
关键词 混凝土预制构件 缓冲区 并行机器 遗传粒子群混合算法
在线阅读 下载PDF
基于混合编码遗传算法的检验质量释放模糊PID控制策略
13
作者 石海琳 纪玉杰 鲁伯林 《沈阳理工大学学报》 2025年第2期41-47,共7页
检验质量作为空间引力波探测的重要检测基准,要求其被释放机构释放后的残余动量极低,但实际由于释放机构释放不对称及受外界扰动力的影响,检验质量会产生一定的加速度与位置偏移,导致其不易控制。针对上述问题,提出基于混合编码遗传算... 检验质量作为空间引力波探测的重要检测基准,要求其被释放机构释放后的残余动量极低,但实际由于释放机构释放不对称及受外界扰动力的影响,检验质量会产生一定的加速度与位置偏移,导致其不易控制。针对上述问题,提出基于混合编码遗传算法的模糊PID控制策略,通过混合编码方式的遗传算法优化模糊PID的量化因子与比例因子,实现检验质量的最优释放控制。联合仿真结果显示:在3.5×10^(-3) N的脉冲扰动力作用下,调节时间缩短至0.06 s,超调量减小至4.2889%,表明了基于混合编码遗传算法的检验质量模糊PID控制器控制精度高、响应速度快、鲁棒性强,能够显著提高检验质量释放控制系统的动态性能。 展开更多
关键词 混合编码 遗传算法 模糊控制 检验质量
在线阅读 下载PDF
多域虚拟网络映射的混合遗传算法模型的研究
14
作者 周自强 高伟 +1 位作者 王尧 杨大哲 《信息技术》 2025年第2期21-27,共7页
针对多域虚拟网络映射滞后的问题,文中提出一种混合遗传算法,该方法将寻求局部最优的理论引入到常规混合遗传算法中,采用混合遗传算法与虚拟网络映射算法的优化组合来解决互联网中存在的问题,通过建立的算法模型检测数据,为进一步提高... 针对多域虚拟网络映射滞后的问题,文中提出一种混合遗传算法,该方法将寻求局部最优的理论引入到常规混合遗传算法中,采用混合遗传算法与虚拟网络映射算法的优化组合来解决互联网中存在的问题,通过建立的算法模型检测数据,为进一步提高互联网的动力提供了支持,并引入具有加速功能的信息更新模块,信息更新模块包括加速器、不间断迭代模块、逻辑模块和数据传输通道,大大提高了数据信息计算能力。实验结果表明,通过该系统技术检测出的数据精准度高达90%以上,表明该算法对于解决如今的互联网问题具有很高的准确性。 展开更多
关键词 混合遗传算法 多域虚拟网络映射 信息更新模块 网络资源效率
在线阅读 下载PDF
基于混合遗传算法的自动化港口箱位指派研究
15
作者 罗浩铭 冷松乐 张先燏 《港口航道与近海工程》 2025年第1期6-11,共6页
港口码头的发展正趋于自动化、智能化,同时随着港口作业规模不断扩大,亟需通过智能算法,实现各项任务的自动化与优化。针对自动化港口中集装箱箱位指派不均衡、现有算法指派效果不佳等问题开展研究,综合考虑了集装箱到达时间与预出箱时... 港口码头的发展正趋于自动化、智能化,同时随着港口作业规模不断扩大,亟需通过智能算法,实现各项任务的自动化与优化。针对自动化港口中集装箱箱位指派不均衡、现有算法指派效果不佳等问题开展研究,综合考虑了集装箱到达时间与预出箱时间,兼顾进箱时与出箱时的作业压力,建立了集装箱箱位指派数学模型。在求解模型时采用了混合遗传算法,将模拟退火算法和传统遗传算法相结合,实现对子代的高效选择;同时通过重编码改进遗传算法中交叉变异过程,实现交叉变异过程的简化,加快算法迭代速度。本文建立的模型与算法能有效对箱位指派结果进行优化、提升自动化港口运行效率。 展开更多
关键词 集装箱码口 箱位指派 混合遗传算法 重编码
在线阅读 下载PDF
基于GASAPSO-RF算法的医疗器械故障检测研究
16
作者 袁鉴辞 李静 +1 位作者 鲁浩 张磊 《电子设计工程》 2025年第9期90-94,101,共6页
针对随机森林模型检测医疗器械故障精度不足的问题,提出了基于粒子群与随机森林的GASAPSO-RF医疗器械故障检测方法。改进粒子群算法将选择、交叉、变异操作融入粒子群迭代过程,利用选择操作优选出粒子群的初始群体,通过交叉和变异提高... 针对随机森林模型检测医疗器械故障精度不足的问题,提出了基于粒子群与随机森林的GASAPSO-RF医疗器械故障检测方法。改进粒子群算法将选择、交叉、变异操作融入粒子群迭代过程,利用选择操作优选出粒子群的初始群体,通过交叉和变异提高种群多样性;利用模拟退火思想优化粒子杂交过程,以一定概率接受最差解,帮助粒子群算法跳出局部最优解;利用改进的PSO算法搜索随机森林模型“决策树数量”与“决策树最大深度”参数的最优值,构建高精准度的GASAPSORF医疗器械故障检测模型,以采集的医疗器械特征量作为输入,获得故障检测类型。对比试验结果表明,GASAPSO算法性能最佳,利于随机森林参数进行搜索;GASAPSO-RF模型有效提升了随机森林故障检测模型的精准度,优化了故障检测效率,为医疗器械故障智能检测提供了新思路。 展开更多
关键词 粒子群 遗传算法 模拟退火 随机森林 杂交 故障检测
在线阅读 下载PDF
基于遗传禁忌混合算法的重力坝断面优化设计
17
作者 葛选辉 《水利科技与经济》 2025年第3期55-60,共6页
研究建立重力坝断面优化设计数学模型,采用遗传与禁忌搜索(GA-TS)混合算法对其进行优化求解。同时,对溢流坝和非溢流坝的断面尺寸设计和断面数值进行研究,并采用GA-TS算法分别对其进行优化设计,结果表明,优化后坝体变形不大,最大拉应力... 研究建立重力坝断面优化设计数学模型,采用遗传与禁忌搜索(GA-TS)混合算法对其进行优化求解。同时,对溢流坝和非溢流坝的断面尺寸设计和断面数值进行研究,并采用GA-TS算法分别对其进行优化设计,结果表明,优化后坝体变形不大,最大拉应力与压应力均符合设计要求,面积优化率分别为12.9%和6.04%,验证了GA-TS算法的可行性。 展开更多
关键词 重力坝 断面优化设计 遗传禁忌混合算法 对比分析
在线阅读 下载PDF
基于混合遗传算法的油藏井位快速优化
18
作者 赵乐义 张蒙 +4 位作者 孙成田 李昱东 任雪瑶 胡鳕茹 丁帅伟 《石油地质与工程》 2025年第2期89-94,共6页
确定合理的井位是一件非常具有挑战性的任务,主要是因为影响油藏生产动态特征的地质因素和工程因素复杂多变,且非线性十分严重。由于深水油藏物性条件比较好,开发策略上通常采用“稀井高产”的方法。目前国内一般采用的是规则井网布井技... 确定合理的井位是一件非常具有挑战性的任务,主要是因为影响油藏生产动态特征的地质因素和工程因素复杂多变,且非线性十分严重。由于深水油藏物性条件比较好,开发策略上通常采用“稀井高产”的方法。目前国内一般采用的是规则井网布井技术,但这种布井思路并不适用于“稀井高产”模式下的不规则布井方式。文中以遗传算法为基础,结合油藏生产潜力图和Gompertz产量预测模型作为辅助技术手段,同时充分考虑井位优化的目标函数、约束条件以及相应的惩罚函数,提出了一种混合遗传算法井位优化流程实现井位快速优化。实例应用表明,该混合遗传算法优化流程优化结果相对于其他方法,在优化效果和优化时间上具有较好的优势,在尽量减少对油藏数值模型调用的条件下,研究成果能够快速完成井位优化,研究成果对于不规则井网的布井方案具有重要指导意义。 展开更多
关键词 井位优化 遗传算法 生产潜力 产量预测模型 混合优化流程
在线阅读 下载PDF
Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost,carbon emission and dump energy of remote residential building 被引量:11
19
作者 A.S.O.Ogunjuyigbe T.R.Ayodele +1 位作者 O.A.Akinola 侯恩哲 《建筑节能》 CAS 2016年第6期38-38,共1页
关键词 Optimal allocation and sizing hybrid energy system Split-diesel generator genetic algorithm
在线阅读 下载PDF
基于高维混合模型的离心泵叶轮子午面优化设计 被引量:2
20
作者 张金凤 俞鑫厚 +2 位作者 高淑瑜 曹璞钰 张文佳 《排灌机械工程学报》 CSCD 北大核心 2024年第4期325-332,共8页
为提高离心泵在设计工况下的运行效率和扬程,提出一种基于高维混合模型的离心泵叶轮优化设计方法.选取一台比转数为157的单级离心泵作为研究对象,通过CFturbo软件对优化变量进行参数化,然后结合数值模拟获得高维混合模型的训练集.在此... 为提高离心泵在设计工况下的运行效率和扬程,提出一种基于高维混合模型的离心泵叶轮优化设计方法.选取一台比转数为157的单级离心泵作为研究对象,通过CFturbo软件对优化变量进行参数化,然后结合数值模拟获得高维混合模型的训练集.在此基础上采用获取的训练集通过MATLAB机器学习得出效率、扬程与优化参数之间关于支持向量回归的高维模型,并采用遗传算法寻优.在设计工况下,所拟合的高维混合模型预测的效率和扬程值比原模型分别高1.5%和3.2 m,数值模拟验证优化方案的效率和扬程分别比原模型高0.9%和2.1 m.算例研究表明,将高维混合模型应用于离心泵叶轮的优化设计中可以实现快速寻优并提高离心泵水力性能. 展开更多
关键词 离心泵 遗传算法 优化设计 支持向量机 混合模型 数值模拟
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部