期刊文献+
共找到787篇文章
< 1 2 40 >
每页显示 20 50 100
Target distribution in cooperative combat based on Bayesian optimization algorithm 被引量:6
1
作者 Shi Zhi fu Zhang An Wang Anli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期339-342,共4页
Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can ... Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best. 展开更多
关键词 target distribution bayesian network bayesian optimization algorithm cooperative air combat.
在线阅读 下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
2
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 bayesian networks Genetic algorithm Structure learning Equivalent class
在线阅读 下载PDF
Learning Bayesian network structure with immune algorithm 被引量:4
3
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
考虑多部件间随机相关性的多阶段退化系统剩余寿命预测方法
4
作者 朱彦军 李可 +1 位作者 吴斌 石慧 《振动与冲击》 北大核心 2025年第10期311-322,共12页
多部件系统中部件之间退化可能存在不同程度的相互影响,使得多部件系统常常具有多阶段的退化特征。针对上述问题,本文考虑多部件系统各部件之间相互作用对退化模式的影响,提出一种基于维纳过程的连续退化双向随机相关影响的多阶段系统... 多部件系统中部件之间退化可能存在不同程度的相互影响,使得多部件系统常常具有多阶段的退化特征。针对上述问题,本文考虑多部件系统各部件之间相互作用对退化模式的影响,提出一种基于维纳过程的连续退化双向随机相关影响的多阶段系统退化建模与剩余寿命预测方法。首先利用突变点检测建立考虑双向随机相关影响的多阶段维纳过程退化模型,用来描述部件间随机相互影响对多部件系统退化过程产生的影响。其次为了反映各部件退化异质性,并考虑部件的退化速率是由自身固有的退化速率和与其相关的部件产生的退化率相互作用两部分组成,将系统各阶段的漂移系数和扩散系数定义为随机参数,运用期望最大化算法估计未知参数。最后采用贝叶斯算法更新后验参数分布,预测突变点位置,根据首达时间推导考虑各部件之间退化随机相关性的多阶段退化系统剩余寿命的表达式,并通过数值模拟和商用模块化航空推进系统仿真数据集验证了该方法的有效性。 展开更多
关键词 多部件 多阶段 剩余寿命预测 随机相关性 贝叶斯算法
在线阅读 下载PDF
融合DT-BO-GRU的中长期光伏功率滚动预测模型
5
作者 李超 涂腾 +3 位作者 彭勋辉 李振 晁梓博 刘淑玉 《太阳能学报》 北大核心 2025年第5期275-284,共10页
提出一种基于决策树提取的贝叶斯优化GRU中长期光伏发电功率滚动预测模型。首先借助决策树模型对光伏组件模型进行参数提取,重新组成特征数据集;其次引入贝叶斯优化算法构建新的GRU神经网络模型;最后对树模型提取的光伏参数进行光伏功... 提出一种基于决策树提取的贝叶斯优化GRU中长期光伏发电功率滚动预测模型。首先借助决策树模型对光伏组件模型进行参数提取,重新组成特征数据集;其次引入贝叶斯优化算法构建新的GRU神经网络模型;最后对树模型提取的光伏参数进行光伏功率预测。实验结果表明,所提出的混合模型在极端地区等特殊场景下具有高精度的预测效果,且实验仿真结果拟合曲线更接近真实值,模型整体评价指标误差较低。因此,该文提出的融合DT-BO-GRU模型具有更高预测精度,为在北方地区对光伏发电功率预测提供了可能。 展开更多
关键词 光伏组件 神经网络 贝叶斯算法 决策树模型 参数提取 功率预测
在线阅读 下载PDF
基于BOA-SVM的冷源系统温度传感器偏差故障检测
6
作者 周璇 闫学成 +1 位作者 闫军威 梁列全 《控制理论与应用》 北大核心 2025年第5期921-930,共10页
针对当前因温度传感器偏差故障识别率低,严重影响冷源系统节能可靠运行的问题,提出一种基于贝叶斯优化支持向量机BOA-SVM组合优化算法的偏差故障检测方法.该方法融合了贝叶斯优化算法(BOA)和支持向量机(SVM)技术,适用于小样本、非线性... 针对当前因温度传感器偏差故障识别率低,严重影响冷源系统节能可靠运行的问题,提出一种基于贝叶斯优化支持向量机BOA-SVM组合优化算法的偏差故障检测方法.该方法融合了贝叶斯优化算法(BOA)和支持向量机(SVM)技术,适用于小样本、非线性故障数据,同时克服了SVM算法对核函数参数与惩罚因子强敏感性的问题.论文建立了广州市某办公建筑冷源系统Trnsys仿真模型,对室外干球、冷冻供水与冷却进水3种温度传感器不同程度的偏差故障进行模拟.仿真结果表明,与本文提出的其他方法相比,该方法准确率高,泛化能力及鲁棒性强,能够满足冷源系统温度传感器偏差故障的检测需求,保障空调系统的安全、高效与稳定运行. 展开更多
关键词 冷源系统 温度传感器 贝叶斯优化 支持向量机 故障检测 TRNSYS
在线阅读 下载PDF
基于Hyperband-贝叶斯优化-LSTM网络的高旋尾控修正弹修正能力研究
7
作者 周杰 王良明 +2 位作者 傅健 王彦钦 郭首邑 《兵工学报》 北大核心 2025年第7期248-258,共11页
为快速准确地解算出高旋尾控修正弹的修正指令,针对其能力预测问题,提出一种基于Hyperband算法-贝叶斯优化-长短期记忆网络(Hyperband algorithm-Bayesian optimization-Long Short-Term Memory network,HBBO-LSTM)的修正能力预测模型... 为快速准确地解算出高旋尾控修正弹的修正指令,针对其能力预测问题,提出一种基于Hyperband算法-贝叶斯优化-长短期记忆网络(Hyperband algorithm-Bayesian optimization-Long Short-Term Memory network,HBBO-LSTM)的修正能力预测模型。建立高旋尾控修正弹的7自由度弹道模型,并使用龙格-库塔法进行数值仿真,生成大量样本数据;通过对数据集的分析,提出一种基于拉马努金近似公式的预处理方式,对原始数据集进行预处理,获得空间分布均匀的样本数据。构建HBBO-LSTM网络预测模型,通过训练得到模型的最佳结构参数。提出一种融合带重启机制的余弦退火衰减和指数衰减的学习率下降策略,保证训练过程的快速性和稳定性。将所述模型与长短期记忆网络模型、门控循环单元网络模型和反向传播网络模型在同一测试集下进行仿真实验,并与4自由度修正质点弹道方程数值积分法进行实验对比。研究结果表明,HBBO-LSTM网络模型的综合均方误差为0.17 m^(2),综合平均绝对误差为0.33 m,预测精度优于其他模型;且解算时间和预测精度均优于数值积分法,具有较高的可行性和参考价值。 展开更多
关键词 修正能力 弹道修正弹 尾控弹 长短期记忆网络 Hyperband算法 贝叶斯优化
在线阅读 下载PDF
加权精细复合多尺度散布熵与改进贝叶斯网络结合的轴承故障诊断
8
作者 仝兆景 孟令强 +1 位作者 唐晋豪 吴鹏 《机械科学与技术》 北大核心 2025年第7期1151-1158,共8页
针对多尺度散布熵方法无法准确估计信号复杂性的问题,为更精确地提取轴承振动信号的故障特征,将加权精细复合多尺度散布熵(Weighted refined composite multiscale dispersion entropy,wRCMDE)引入到轴承故障特征提取中。在此基础上,提... 针对多尺度散布熵方法无法准确估计信号复杂性的问题,为更精确地提取轴承振动信号的故障特征,将加权精细复合多尺度散布熵(Weighted refined composite multiscale dispersion entropy,wRCMDE)引入到轴承故障特征提取中。在此基础上,提出了一种基于wRCMDE与改进贝叶斯网络相结合的滚动轴承故障诊断方法。通过计算不同故障振动信号的wRCMDE,并选取合适尺度下的多个wRCMDE值作为特征向量形成特征样本,输入到改进萤火虫算法优化的贝叶斯网络中进行故障分类识别。通过实验数据分析,将所提方法与基于多尺度散布熵和精细复合多尺度散布熵的故障特征提取方法进行对比,结果表明,该方法能够更加准确地识别滚动轴承的故障类型,且识别率更高。 展开更多
关键词 加权精细复合多尺度散布熵 萤火虫算法 贝叶斯网络 故障诊断
在线阅读 下载PDF
基于神经网络的船舶辐射噪声预报方法 被引量:1
9
作者 黄欣 徐荣武 李瑞彪 《船舶力学》 北大核心 2025年第3期486-496,共11页
针对船舶机械设备众多、结构复杂、振动传递路径相互耦合的现状,本文提出基于误差反向传播(Back Propagation, BP)神经网络的船舶水下辐射噪声预报方法。分别构建基于梯度下降算法和贝叶斯正则化算法的BP神经网络,以振动数据为输入量、... 针对船舶机械设备众多、结构复杂、振动传递路径相互耦合的现状,本文提出基于误差反向传播(Back Propagation, BP)神经网络的船舶水下辐射噪声预报方法。分别构建基于梯度下降算法和贝叶斯正则化算法的BP神经网络,以振动数据为输入量、船体辐射噪声为输出量,将均方根误差(e RMSE)和平均绝对误差(e MAE)作为模型预测精度评价指标。结果表明,贝叶斯正则化BP神经网络的泛化性和鲁棒性优于梯度下降算法的BP神经网络,误差达到3 dB以内,在船舶辐射噪声预报领域具有较好的适用性。 展开更多
关键词 辐射噪声预报 BP神经网络 梯度下降算法 贝叶斯正则化算法
在线阅读 下载PDF
基于WOA-VMD和贝叶斯估计的保护测量回路误差评估
10
作者 李振兴 柳灿 +2 位作者 翁汉琍 李振华 龚世玉 《三峡大学学报(自然科学版)》 北大核心 2025年第2期97-105,共9页
变电站保护测量回路受测量误差影响,保护灵敏度降低,对于重载线路可能引起保护误动,会造成严重后果.为推动保护测量的状态监视,提出一种基于鲸鱼优化(whale optimization algorithm,WOA)的变分模态分解(variational mode decomposition,... 变电站保护测量回路受测量误差影响,保护灵敏度降低,对于重载线路可能引起保护误动,会造成严重后果.为推动保护测量的状态监视,提出一种基于鲸鱼优化(whale optimization algorithm,WOA)的变分模态分解(variational mode decomposition,VMD)和贝叶斯估计的保护测量回路误差评估方法.针对保护测量回路的电流数据,引入WOA并结合包络熵作为适应度函数确定VMD的关键参数,基于WOA-VMD将原电流数据分解为本征模态;进一步为解决特征数目过多所带来的复杂数据分析问题,引入皮尔逊相关系数方法计算其各组系数优选特征量;最终利用贝叶斯估计法量化分析优选后的特征量信号实现误差判定.实验结果表明,本文的评估方法能够准确监测保护测量回路2%的误差偏移. 展开更多
关键词 保护测量回路 误差评估 鲸鱼优化算法 包络熵 皮尔逊相关系数 贝叶斯估计法
在线阅读 下载PDF
Multi-sources information fusion algorithm in airborne detection systems 被引量:19
11
作者 Yang Yan Jing Zhanrong Gao Tan Wang Huilong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期171-176,共6页
To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ... To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation. 展开更多
关键词 Information fusion Dempster-Shafer evidence theory Subjective bayesian algorithm Airplane detecting system
在线阅读 下载PDF
贝叶斯正则化优化BP神经网络估算SOH 被引量:1
12
作者 朱聪聪 郭晟 +1 位作者 常海涛 路密 《电池》 北大核心 2025年第1期25-31,共7页
为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应... 为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应性。以充电全过程提取健康特征验证模型精度;以放电片段数据提取健康特征模拟实际工况。训练后的模型在充电全过程提取特征时的均方根误差(RMSE)和平均绝对误差(MAE)均小于1.65%,采用放电片段提取特征时的RMSE和MAE均小于3.85%,相较于未优化的BP神经网络,两种方式的估算误差分别降低18%和41%以上。 展开更多
关键词 锂离子电池 健康状态(SOH) 贝叶斯正则化算法 反向传播(BP)神经网络 健康特征 先验分布 后验分布
在线阅读 下载PDF
基于贝叶斯优化算法的超表面结构色逆向设计方法
13
作者 黄子扬 张振荣 +2 位作者 孙宇 黄洋 谢锋 《光通信技术》 北大核心 2025年第3期97-101,共5页
针对传统结构色正向设计存在的优化参数较少、计算耗时长以及静态结构色不可调等问题,提出一种基于贝叶斯优化算法的超表面结构色逆向设计方法。通过引入可调谐的相变材料设计纳米天线,结合贝叶斯优化算法和时域有限差分法,对超表面结... 针对传统结构色正向设计存在的优化参数较少、计算耗时长以及静态结构色不可调等问题,提出一种基于贝叶斯优化算法的超表面结构色逆向设计方法。通过引入可调谐的相变材料设计纳米天线,结合贝叶斯优化算法和时域有限差分法,对超表面结构色参数进行仿真优化。利用结构内部的Mie谐振在反射模式下产生结构颜色,同时通过相变材料的不同相态转变,实现可逆的颜色调谐。仿真结果表明:所设计的结构色器件具备超表面的颜色动态可调谐功能,在波长分别为450、545、660nm时获得的色差分别为63.30、69.30、54.21,并具有角度敏感的特性。 展开更多
关键词 结构色 相变材料 贝叶斯优化算法 超表面结构
在线阅读 下载PDF
基于Bayesian的期望最大化方法——BEM算法 被引量:5
14
作者 温津伟 罗四维 +1 位作者 赵嘉莉 韩臻 《计算机研究与发展》 EI CSCD 北大核心 2001年第7期821-825,共5页
通过对标准 EM算法收敛于局部极值的原因进行分析 ,提出了基于 Bayesian方法的神经网络新学习算法—— BEM算法 .该算法解决了标准 EM算法的上述缺陷 ,同时还可防止标准 EM算法 Overfitting情况的出现 ,并可防止标准 EM算法有时只响应... 通过对标准 EM算法收敛于局部极值的原因进行分析 ,提出了基于 Bayesian方法的神经网络新学习算法—— BEM算法 .该算法解决了标准 EM算法的上述缺陷 ,同时还可防止标准 EM算法 Overfitting情况的出现 ,并可防止标准 EM算法有时只响应单一模式而失去泛化能力情况的出现 .实验结果表明了该算法的正确性和有效性 .该算法对研究和发展标准 展开更多
关键词 随机神经网络 EM算法 bayesian方法 Wishart-Gaussian分布
在线阅读 下载PDF
结合局部结构学习的Bayesian优化算法 被引量:1
15
作者 武燕 王宇平 刘小雄 《系统工程与电子技术》 EI CSCD 北大核心 2008年第12期2493-2496,共4页
在Bayesian优化算法中Bayesian网络的学习是算法应用的关键,而Bayesian网络学习是一个NP-hard问题,并且计算量大。为了能够快速获得较稳定的Bayesian网络,提出了一种新的学习策略,在学习Bayes-ian网络结构时采用对局部结构的贪婪算法,... 在Bayesian优化算法中Bayesian网络的学习是算法应用的关键,而Bayesian网络学习是一个NP-hard问题,并且计算量大。为了能够快速获得较稳定的Bayesian网络,提出了一种新的学习策略,在学习Bayes-ian网络结构时采用对局部结构的贪婪算法,并结合局部搜索利用打分测度选取最优边。对所提算法进行了分析,在算法复杂度较小的情况下,所学习的Bayesian网络可靠性明显提高,算法收敛速度加快,并且避免陷入局部最优。仿真研究表明文章所提出算法寻优能力优于传统Bayesian优化算法。 展开更多
关键词 bayesian优化算法 bayesian网络 贪婪算法
在线阅读 下载PDF
基于Bayesian改进算法的回转窑故障诊断模型研究 被引量:21
16
作者 刘浩然 吕晓贺 +2 位作者 李轩 李世昭 史永红 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第7期1554-1561,共8页
贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结... 贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结合,提出了一种新的贝叶斯网络结构学习改进算法。通过与经典的爬山法和K2算法进行比较,结果表明该改进算法不仅能够得到较高准确率的模型,而且能够提高模型建立的效率。最后基于该改进算法,结合冀东水泥集团的水泥回转窑现场运行数据,建立了水泥回转窑故障诊断模型,实现了精确快速的故障诊断。 展开更多
关键词 最大支撑树 改进算法 贝叶斯网络结构学习 水泥回转窑 故障诊断模型
在线阅读 下载PDF
多传感器融合的无人车SLAM系统研究
17
作者 吴文昊 谷玉海 《重庆理工大学学报(自然科学)》 北大核心 2025年第1期229-235,共7页
为提高无人车的避障能力,使其能够在构建的地图环境中高效地进行自动定位和路径规划,提出一种多传感器融合的无人车SLAM系统。对于障碍物监测,采用激光雷达与深度相机信息融合的方法构建地图,以融合得到更精准的栅格图。搭建了履带式差... 为提高无人车的避障能力,使其能够在构建的地图环境中高效地进行自动定位和路径规划,提出一种多传感器融合的无人车SLAM系统。对于障碍物监测,采用激光雷达与深度相机信息融合的方法构建地图,以融合得到更精准的栅格图。搭建了履带式差速底盘运动学模型,通过融合IMU数据提高位姿估计精度;分析了贝叶斯推理方法,在决策层以该方法有效融合激光雷达与深度相机的数据;提出基于卡尔曼滤波算法动态调整权重将雷达与相机的后验概率融合,得到最终的地图栅格信息。最后,根据融合后的数据构建地图并实现自主导航的功能。通过对比实验发现,改进的多传感器融合建图算法定位精度综合提高了91.67%,实时的整体性能提升了54.46%,栅格建图完整性提升了6.59%。 展开更多
关键词 贝叶斯算法 融合建图 激光雷达 深度相机 ROS2
在线阅读 下载PDF
Bayesian正规化BP神经网络及其在医学预测中的应用 被引量:6
18
作者 徐建伟 刘桂芬 《中国卫生统计》 CSCD 北大核心 2007年第6期597-599,共3页
目的提高BP神经网络的推广能力。方法采用正规化方法,利用MATLAB软件编程。结果实例分析表明Bayesian正规化BP神经网络模型不仅能准确地拟合训练值,而且能更合理地进行预测未知样本,具有较好的泛化能力。结论Bayesian正规化方法建立的B... 目的提高BP神经网络的推广能力。方法采用正规化方法,利用MATLAB软件编程。结果实例分析表明Bayesian正规化BP神经网络模型不仅能准确地拟合训练值,而且能更合理地进行预测未知样本,具有较好的泛化能力。结论Bayesian正规化方法建立的BP神经网络可以提高其泛化能力,在小样本情况下更具应用价值。 展开更多
关键词 BP算法 bayesian正规化 推广能力
在线阅读 下载PDF
基于数据驱动贝叶斯网络模型的起重作业关键致因要素分析
19
作者 国汉君 康荣学 +3 位作者 王勇 曹海滨 崔华莹 赵金龙 《中国安全生产科学技术》 北大核心 2025年第4期86-93,共8页
为了提升起重作业现场精准化管理水平,基于双因(内外因)事故综合致因理论,结合起重作业全流程,从人员、设备、环境和管理4个方面构建起重作业致因要素指标体系(22个二级指标和57个三级指标),并利用179起起重作业事故案例对指标体系进行... 为了提升起重作业现场精准化管理水平,基于双因(内外因)事故综合致因理论,结合起重作业全流程,从人员、设备、环境和管理4个方面构建起重作业致因要素指标体系(22个二级指标和57个三级指标),并利用179起起重作业事故案例对指标体系进行验证;采用Apriori算法明确151条指标间的强关联规则,并构建起重作业贝叶斯网络,采用参数学习的方法,开展先验、后验和敏感性分析等。研究结果表明:安全培训不到位与违章操作关联度最高(支持度62.01%,置信度53.15%);先验和后验分析中安全培训问题最为突出,占比为62%,其次为人员违章操作,占比为48%;在敏感性分析中,交叉作业、起重设备突发因素、防护装备及着装不正确、缺少安全操作规程、应急预案等文件和隐患排查不到位等因素的敏感度较高;基于以上分析结果,提出针对性的对策建议。研究结果可为起重作业现场精准化管理提供技术参考。 展开更多
关键词 起重作业 APRIORI算法 贝叶斯网络 关键要素分析 对策建议
在线阅读 下载PDF
基于变异的Bayesian优化算法 被引量:1
20
作者 武燕 王宇平 刘小雄 《计算机工程》 CAS CSCD 北大核心 2007年第16期153-155,158,共4页
将变异算子与Bayesian优化算法相结合,提出了一种基于变异的Bayesian优化算法。在算法中设计了一个种群多样性函数,通过此函数引入变异算子,目的是利用变异算子的邻域搜索能力,保持种群多样性,将贝叶斯概率模型提取的全局信息与变异算... 将变异算子与Bayesian优化算法相结合,提出了一种基于变异的Bayesian优化算法。在算法中设计了一个种群多样性函数,通过此函数引入变异算子,目的是利用变异算子的邻域搜索能力,保持种群多样性,将贝叶斯概率模型提取的全局信息与变异算子的局部信息联系起来,避免陷入局部最优。仿真研究表明基于变异的Bayesian优化算法的寻优能力比Bayesian优化算法更强。 展开更多
关键词 变异算子 bayesian优化算法 种群多样性
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部