Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging alo...Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency.展开更多
For increasing the cross-track resolution, the multiple input multiple output (MIMO) technique is introduced into the swath bathymetry system and a new swath bathymetry approach using MIMO sonar is proposed. The MIM...For increasing the cross-track resolution, the multiple input multiple output (MIMO) technique is introduced into the swath bathymetry system and a new swath bathymetry approach using MIMO sonar is proposed. The MIMO sonar is composed of two parallel transmitting uniform linear arrays (ULAs) and a receiving ULA which is perpendicular to the former. The spacing between the two transmitting ULAs is equal to the product of the receiving sensor number and the receiving inter-sensor spacing. Furthermore, two narrowband linear frequency modulation (LFM) pulses, sharing the same frequency band but with opposite modulation slopes, are used as transmitting waveforms of the two transmitting ULAs. With such an array layout and transmitting signals, the MIMO sonar can sound a swath with the cross-track resolution doubling that of the traditional multibeam sonar using a Mills cross array. Numerical examples are provided to verify the effectiveness of the proposed approach.展开更多
基金supported by the National Key R&D Program of China(Grant No.2023YFC3010803)the National Nature Science Foundation of China(Grant No.52272424)+1 种基金the Key R&D Program of Hubei Province of China(Grant No.2023BCB123)the Fundamental Research Funds for the Central Universities(Grant No.WUT:2023IVB079)。
文摘Side-scan sonar(SSS)is now a prevalent instrument for large-scale seafloor topography measurements,deployable on an autonomous underwater vehicle(AUV)to execute fully automated underwater acoustic scanning imaging along a predetermined trajectory.However,SSS images often suffer from speckle noise caused by mutual interference between echoes,and limited AUV computational resources further hinder noise suppression.Existing approaches for SSS image processing and speckle noise reduction rely heavily on complex network structures and fail to combine the benefits of deep learning and domain knowledge.To address the problem,Rep DNet,a novel and effective despeckling convolutional neural network is proposed.Rep DNet introduces two re-parameterized blocks:the Pixel Smoothing Block(PSB)and Edge Enhancement Block(EEB),preserving edge information while attenuating speckle noise.During training,PSB and EEB manifest as double-layered multi-branch structures,integrating first-order and secondorder derivatives and smoothing functions.During inference,the branches are re-parameterized into a 3×3 convolution,enabling efficient inference without sacrificing accuracy.Rep DNet comprises three computational operations:3×3 convolution,element-wise summation and Rectified Linear Unit activation.Evaluations on benchmark datasets,a real SSS dataset and Data collected at Lake Mulan aestablish Rep DNet as a well-balanced network,meeting the AUV computational constraints in terms of performance and latency.
基金supported by the National Natural Science Foundation of China(11104222)the Doctorate Foundation of Northwestern Polytechnical University(CX201101)
文摘For increasing the cross-track resolution, the multiple input multiple output (MIMO) technique is introduced into the swath bathymetry system and a new swath bathymetry approach using MIMO sonar is proposed. The MIMO sonar is composed of two parallel transmitting uniform linear arrays (ULAs) and a receiving ULA which is perpendicular to the former. The spacing between the two transmitting ULAs is equal to the product of the receiving sensor number and the receiving inter-sensor spacing. Furthermore, two narrowband linear frequency modulation (LFM) pulses, sharing the same frequency band but with opposite modulation slopes, are used as transmitting waveforms of the two transmitting ULAs. With such an array layout and transmitting signals, the MIMO sonar can sound a swath with the cross-track resolution doubling that of the traditional multibeam sonar using a Mills cross array. Numerical examples are provided to verify the effectiveness of the proposed approach.