期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Fault-Diagnosis Method Based on Support Vector Machine and Artificial Immune for Batch Process
1
作者 马立玲 张瞾 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2010年第3期337-342,共6页
A new fault-diagnosis method to be used in batch processes based on multi-phase regression is presented to overcome the difficulty arising in the processes due to non-uniform sample data in each phase.Support vector m... A new fault-diagnosis method to be used in batch processes based on multi-phase regression is presented to overcome the difficulty arising in the processes due to non-uniform sample data in each phase.Support vector machine is first used for phase identification,and for each phase,improved artificial immune network is developed to analyze and recognize fault patterns.A new cell elimination role is proposed to enhance the incremental clustering capability of the immune network.The proposed method has been applied to glutamic acid fermentation,comparison results have indicated that the proposed approach can better classify fault samples and yield higher diagnosis precision. 展开更多
关键词 fault diagnosis support vector machine artificial immune batch process
在线阅读 下载PDF
脑机接口中基于BISVM的EEG分类 被引量:1
2
作者 杨帮华 何美燕 +1 位作者 刘丽 陆文宇 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第8期1431-1436,共6页
针对脑电信号(EEG)分类问题,提出基于批处理增量式支持向量机(BISVM)的分类方法.将所有数据通过批处理进行分组,采用第1组数据在SVM中建立初始分类器模型,将剩余组内数据顺序作为新增样本,对满足卡罗需-库恩-塔克(KKT)条件的样本进行增... 针对脑电信号(EEG)分类问题,提出基于批处理增量式支持向量机(BISVM)的分类方法.将所有数据通过批处理进行分组,采用第1组数据在SVM中建立初始分类器模型,将剩余组内数据顺序作为新增样本,对满足卡罗需-库恩-塔克(KKT)条件的样本进行增量学习和减量去学习,不断判断KKT条件并更新参数,丢弃错误样本,对初始分类器模型进行更新.对2008年脑机接口竞赛数据及本实验室采集数据,用小波包分解(WPD)结合共空间模式(CSP)进行特征提取,SVM、ISVM及BISVM分类.结果表明,BISVM的平均分类准确率相对SVM及ISVM分别提高了3.3%及0.3%,BISVM平均训练时间相对ISVM从1.076s减少到0.793s.BISVM为改善计算机对大脑的适应性,实现快速实时在线的脑机接口系统奠定基础. 展开更多
关键词 脑机接口 批处理增量式支持向量机 脑电 分类
在线阅读 下载PDF
火箭发动机故障检测的快速增量单分类支持向量机算法 被引量:2
3
作者 张万旋 张箭 +2 位作者 卢哲 薛薇 张楠 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第2期115-122,共8页
为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单... 为解决液体火箭发动机故障诊断正负样本不平均问题,以及实现发动机稳态工作段自适应故障检测,建立了基于快速增量单分类支持向量机的异常检测模型。采取特征工程方法,对传感器获得的多变量时间序列进行特征提取。通过增量学习方法,对单分类支持向量机模型进行改进,并应用于液体火箭发动机异常检测,使单分类支持向量机检测模型具备对不同台次、不同工况的自适应性,提高了模型的计算速度。对多台次热试车数据的分析结果表明,该模型十分有效,训练速度快,具备实用价值。 展开更多
关键词 单分类支持向量机 特征提取 自适应检测 增量学习 异常检测
在线阅读 下载PDF
基于壳向量的线性支持向量机快速增量学习算法 被引量:16
4
作者 李东晖 杜树新 吴铁军 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第2期202-206,215,共6页
提出了一种新的基于壳向量的增量式支持向量机快速学习算法.在增量学习的过程中,利用训练样本集中的几何信息,在样本中选取一部分最有可能成为支持向量的样本———壳向量,它是支持向量集的一个规模较小的扩展集,将其作为新的训练样本集... 提出了一种新的基于壳向量的增量式支持向量机快速学习算法.在增量学习的过程中,利用训练样本集中的几何信息,在样本中选取一部分最有可能成为支持向量的样本———壳向量,它是支持向量集的一个规模较小的扩展集,将其作为新的训练样本集,再进行支持向量训练.这在很大程度上减少了求取支持向量过程中的二次优化运算时间,使增量学习的训练速度大为提高.与单纯使用支持向量代表样本数据集合进行增量学习的传统算法相比,使用该算法使分类精度得到了提高.针对肝功能检测标准数据集(BUPA)的实验验证了该算法的有效性. 展开更多
关键词 增量算法 支持向量机 壳向量
在线阅读 下载PDF
一种基于距离比值的支持向量机增量训练算法 被引量:8
5
作者 徐海龙 王晓丹 +2 位作者 史朝辉 华继学 权文 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2008年第4期29-33,共5页
由于支持向量机具有较好地学习性能和泛化能力,目前已经得到了广泛的应用。如何使支持向量机进行有效的增量学习是目前支持向量机应用中需要解决的问题。深入研究了支持向量分布特点,提出了一种新的支持向量机增量训练淘汰机制——距离... 由于支持向量机具有较好地学习性能和泛化能力,目前已经得到了广泛的应用。如何使支持向量机进行有效的增量学习是目前支持向量机应用中需要解决的问题。深入研究了支持向量分布特点,提出了一种新的支持向量机增量训练淘汰机制——距离比值算法。该算法根据遗忘规则,设定一个合适的参数,按距离比值法中的定义计算各个样本中心距离与其到最优分类面距离的比值,舍弃对后续训练影响不大的样本,即可对训练数据进行有效的淘汰。对标准数据集的实验结果表明,使用该方法进行增量训练在保证分类精度的同时,能有效地提高训练速度。 展开更多
关键词 支持向量机 增量训练 淘汰机制 边界矢量 距离比值算法
在线阅读 下载PDF
一种支持向量机增量学习淘汰算法 被引量:6
6
作者 廖东平 魏玺章 +1 位作者 黎湘 庄钊文 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第3期65-70,共6页
针对大规模数据集的分类问题,支持向量机的训练成为一个难题。增量学习是解决这一难题的思路之一。分析了新增样本加入训练集后支持向量集的变化情况,提出了一种基于密度法的支持向量机增量学习淘汰算法,淘汰了对最终分类无用的样本,在... 针对大规模数据集的分类问题,支持向量机的训练成为一个难题。增量学习是解决这一难题的思路之一。分析了新增样本加入训练集后支持向量集的变化情况,提出了一种基于密度法的支持向量机增量学习淘汰算法,淘汰了对最终分类无用的样本,在保证测试精度的同时减少了训练时间。实验仿真证明这种算法是有效的。 展开更多
关键词 支持向量机 增量学习 支持向量
在线阅读 下载PDF
基于支持向量机的增量学习算法研究 被引量:10
7
作者 李忠伟 张健沛 杨静 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2005年第5期643-646,共4页
分析了支持向量机理论中支持向量的特性,利用支持向量与样本空间划分的等价性,提出一种新的基于支持向量机的增量学习算法.该算法考虑新增样本集的分布可能改变对已有样本的分类结果,利用支持向量的分布特性,用对样本的划分差集构造新... 分析了支持向量机理论中支持向量的特性,利用支持向量与样本空间划分的等价性,提出一种新的基于支持向量机的增量学习算法.该算法考虑新增样本集的分布可能改变对已有样本的分类结果,利用支持向量的分布特性,用对样本的划分差集构造新的支持向量集和分类平面,使差集中的样本点对分类贡献尽可能最大,有效提高了分类精度.同时差集操作简单易行,有效降低了问题的计算复杂度.实验结果表明,与常规增量算法相比,该算法在不改变时间复杂度量级的前提下对分类精度有显著提高. 展开更多
关键词 支持向量机 支持向量 增量学习 分类
在线阅读 下载PDF
基于SVM增量学习算法的煤矿高压断路器故障模式识别方法 被引量:11
8
作者 耿蒲龙 宋建成 +3 位作者 赵钰 高云广 郑丽君 呼守信 《煤炭学报》 EI CAS CSCD 北大核心 2017年第8期2198-2204,共7页
高压断路器故障模式的准确识别是矿井电网智能化发展过程中的重要支撑环节。针对高压断路器故障数据不易获取且故障样本较少的问题,提出了一种支持向量机与增量学习算法相结合的故障识别方法,确定了以断路器控制回路电流信号、电压信号... 高压断路器故障模式的准确识别是矿井电网智能化发展过程中的重要支撑环节。针对高压断路器故障数据不易获取且故障样本较少的问题,提出了一种支持向量机与增量学习算法相结合的故障识别方法,确定了以断路器控制回路电流信号、电压信号以及分合闸振动信号为状态监测量,模拟了弹簧松动、铁芯卡涩、供电异常与线圈老化4种常见故障,提取了故障特征量并建立了故障数据样本与增量学习数据样本,采用支持向量机增量学习算法训练得到了故障识别模型,并利用新增数据样本对其进行了验证。结果表明:支持向量机增量学习算法可准确识别上述4种常见故障,并可以通过对新增样本的不断学习进一步提高识别精度。 展开更多
关键词 高压断路器 特征提取 故障模式识别 支持向量机 增量学习算法
在线阅读 下载PDF
支持向量机的增量学习和减量学习 被引量:5
9
作者 段华 侯伟真 +1 位作者 贺国平 廉文娟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期415-421,共7页
分别介绍了支持向量机的增量学习和减量学习的两种训练方法,即在线递归训练法和最小二乘支持向量机.递归法只能处理在线(每次只处理一个样本)增量学习或减量学习,而最小二乘法即可处理在线又可处理成批增量学习或减量学习.递归法... 分别介绍了支持向量机的增量学习和减量学习的两种训练方法,即在线递归训练法和最小二乘支持向量机.递归法只能处理在线(每次只处理一个样本)增量学习或减量学习,而最小二乘法即可处理在线又可处理成批增量学习或减量学习.递归法得到的解是精确的但是以时间为代价的,最小二乘法花费的时间少,但得到的解不如递归法的精确.并通过标准模式分类库中数据集进行数值试验比较. 展开更多
关键词 支持向量机 增量学习 减量学习 最小二乘法
在线阅读 下载PDF
模板自适应的Mean Shift红外目标跟踪 被引量:5
10
作者 郭敬明 何昕 +2 位作者 杨杰 魏仲慧 龚俊亮 《红外与激光工程》 EI CSCD 北大核心 2014年第4期1087-1093,共7页
为了解决Mean Shift跟踪算法中目标模板只能从单一图像建立且很难更新问题,提出了一种结合改进的Mean Shift与增量式支持向量机的红外目标跟踪算法。首先,根据目标区域的灰度直方图对目标进行描述,然后采用标准Mean Shift搜索目标,结合... 为了解决Mean Shift跟踪算法中目标模板只能从单一图像建立且很难更新问题,提出了一种结合改进的Mean Shift与增量式支持向量机的红外目标跟踪算法。首先,根据目标区域的灰度直方图对目标进行描述,然后采用标准Mean Shift搜索目标,结合子图图像矩特征进行二次搜索,再计算下一帧搜索的窗口大小,以解决目标尺寸明显变化时造成目标丢失的问题。同时,针对目标遮挡易导致跟踪失败的问题,引入机器学习理论,采用增量式支持向量机自适应更新模板,则目标跟踪问题转换为目标和背景的分类问题。实验结果表明:提出的改进算法在目标尺寸、姿态发生变化或出现部分遮挡时,能有效跟踪目标。 展开更多
关键词 图像矩 机器学习 增量式支持向量机
在线阅读 下载PDF
使用增量SVM进行文本分类 被引量:6
11
作者 张永 周振龙 +1 位作者 侯莉莉 张世宏 《兰州理工大学学报》 CAS 北大核心 2007年第1期100-103,共4页
针对传统SVM无法适应文本数据库随着时间不断更新的问题,通过对新增文本集的KKT条件的分析,研究了加入新增文本集后支持向量集的变化,提出了使用增量SVM进行文本分类的算法,并通过实验验证了通过该算法得到的分类器和传统分类器有着相... 针对传统SVM无法适应文本数据库随着时间不断更新的问题,通过对新增文本集的KKT条件的分析,研究了加入新增文本集后支持向量集的变化,提出了使用增量SVM进行文本分类的算法,并通过实验验证了通过该算法得到的分类器和传统分类器有着相似的分类能力和泛化能力. 展开更多
关键词 文本分类 支持向量机 KKT条件 增量
在线阅读 下载PDF
基于用户兴趣度的垃圾邮件在线识别新方法 被引量:4
12
作者 王友卫 刘元宁 +1 位作者 凤丽洲 朱晓冬 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第7期21-27,共7页
多数在线垃圾邮件识别方法未有效区分用户针对不同邮件内容的感兴趣程度,导致垃圾邮件识别精度不高.文中提出了一种基于支持向量机的垃圾邮件在线识别新方法.即结合传统增量学习及主动学习理论,先通过随机选择代表样本寻找分类最不确定... 多数在线垃圾邮件识别方法未有效区分用户针对不同邮件内容的感兴趣程度,导致垃圾邮件识别精度不高.文中提出了一种基于支持向量机的垃圾邮件在线识别新方法.即结合传统增量学习及主动学习理论,先通过随机选择代表样本寻找分类最不确定的样本进行人工标注;接着引入用户兴趣度的概念,提出了新的样本标注模型和算法性能评价标准;最后结合"轮盘赌"方法将标注后样本加入训练样本集.多种对比实验表明,文中方法针对垃圾邮件识别精度高,样本训练及待标注样本选择速度快,具有较高的在线应用价值. 展开更多
关键词 垃圾邮件 支持向量机 增量学习 主动学习 用户兴趣
在线阅读 下载PDF
用于人机交互的静态手势识别系统 被引量:13
13
作者 刘江华 陈佳品 程君实 《红外与激光工程》 EI CSCD 北大核心 2002年第6期499-503,共5页
提出并实现一个用于人机交互的静态手势识别系统。基于皮肤颜色模型进行手势分割,并用傅里叶描述子描述轮廓。采用针对小样本特别有效且范化误差有界的支持向量机方法:最小二乘支持向量机(LS SVM)作为分类器。提出了LS SVM的增量训练方... 提出并实现一个用于人机交互的静态手势识别系统。基于皮肤颜色模型进行手势分割,并用傅里叶描述子描述轮廓。采用针对小样本特别有效且范化误差有界的支持向量机方法:最小二乘支持向量机(LS SVM)作为分类器。提出了LS SVM的增量训练方式,避免了费时的矩阵求逆操作。为实现多类手势识别,利用DAG(DirectedAcyclicGraph)将多个两类LS SVM结合起来。对26个字母手势进行识别,与多层感知器、径向基函数网络等方法比较,LS SVM的识别率最高,为93.62%。 展开更多
关键词 人机交互 手势识别 傅里叶描述子 最小二乘支持向量机 增量训练算法 多类分类
在线阅读 下载PDF
基于多支持向量机分类器的增量学习算法研究 被引量:7
14
作者 杨静 张健沛 刘大昕 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第1期103-106,共4页
为了将一般增量学习算法扩展到并行计算环境中,提出一种基于多支持向量机分类器的增量学习算法.该算法根据多分类器对新增样本集的分类结果,以样本到分类超平面的平均距离为条件重新构造支持向量集更新分类器,直到所有分类器的分类精度... 为了将一般增量学习算法扩展到并行计算环境中,提出一种基于多支持向量机分类器的增量学习算法.该算法根据多分类器对新增样本集的分类结果,以样本到分类超平面的平均距离为条件重新构造支持向量集更新分类器,直到所有分类器的分类精度满足指定阈值.实验结果表明了该算法的可行性和正确性. 展开更多
关键词 多支持向量机分类器 支持向量 增量学习 平均距离
在线阅读 下载PDF
增量式监督局部切空间排列算法及齿轮箱故障诊断实验验证 被引量:6
15
作者 佘博 田福庆 +1 位作者 梁伟阁 汤健 《振动与冲击》 EI CSCD 北大核心 2018年第13期105-110,129,共7页
针对局部切空间排列算法面临的无法利用样本标签信息和不能高效处理增量式维数约简问题,提出一种新的增量式监督局部切空间排列算法(Incremental Supervised Local Tangent Space Alignment,ISLTSA)。为充分利用训练样本标签信息,在LTS... 针对局部切空间排列算法面临的无法利用样本标签信息和不能高效处理增量式维数约简问题,提出一种新的增量式监督局部切空间排列算法(Incremental Supervised Local Tangent Space Alignment,ISLTSA)。为充分利用训练样本标签信息,在LTSA算法的基础上加入散度矩阵,构造新的最小目标函数,使得高维样本的低维嵌入坐标同类聚集、异类分离。对于新增样本可能影响部分训练样本局部邻域,更新全局坐标矩阵,获取训练样本低维坐标和新增样本低维坐标,并作为初值进行特征值迭代实现所有样本全局坐标的更新。结合支持向量机分类算法,将ISLTSA算法应用于齿轮箱的故障状态识别,实验分析验证了该方法的监督学习能力,可提高故障状态识别率,并具备增量学习能力,可降低维数约简方法的复杂度。 展开更多
关键词 增量式学习 监督局部切空间排列 故障诊断 支持向量机
在线阅读 下载PDF
基于支持向量机的增量式算法 被引量:3
16
作者 黄启春 刘仰光 何钦铭 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第12期2121-2126,共6页
为了扩展支持向量机在大规模数据集和成批出现数据领域的应用,提出了一种基于支持向量机的增量式学习算法.利用标准的支持向量机算法训练得到初始的目标概念,通过增量式步骤不断更新初始的目标概念.更新模型是求解一个与标准支持向量机... 为了扩展支持向量机在大规模数据集和成批出现数据领域的应用,提出了一种基于支持向量机的增量式学习算法.利用标准的支持向量机算法训练得到初始的目标概念,通过增量式步骤不断更新初始的目标概念.更新模型是求解一个与标准支持向量机具有类似的数学形式的凸二次规划问题.证明了在可分情况下,如果新增加的样本不是位于边界区,那么增量式过程既不会改变分类平面也不会改变分类平面的表达.与现有的增量式支持向量机算法相比,该算法无需额外计算就可实现增量式的逆过程并且训练时间与增量式步骤数成反比.实验结果表明,该算法满足稳定性、能够不断改进性能以及性能回复三个准则. 展开更多
关键词 机器学习 模式分类 支持向量机 增量式算法
在线阅读 下载PDF
支持向量机增量学习中模型参数选择问题研究 被引量:5
17
作者 张鹏 倪世宏 谢川 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2011年第5期5-9,共5页
支持向量机性能主要受模型参数的影响,而支持向量机增量学习中模型参数选择问题研究较少。针对这一问题,提出一种支持向量机增量学习中模型参数选择方法。将鲁棒度作为增量学习的性能估计准则,用拟合误差和比例系数调节解空间取值范围,... 支持向量机性能主要受模型参数的影响,而支持向量机增量学习中模型参数选择问题研究较少。针对这一问题,提出一种支持向量机增量学习中模型参数选择方法。将鲁棒度作为增量学习的性能估计准则,用拟合误差和比例系数调节解空间取值范围,采用梯度下降法搜索参数,用初始模型参数作为梯度下降法的初始值。用该方法对Logistic模型和航空发动机振动监控进行实验。结果表明:与基本遗传算法和梯度法进行比较,所提方法能充分利用历史学习的结果,缩小解空间的搜索范围,加快收敛速度。 展开更多
关键词 支持向量机 增量学习 模型参数选择 鲁棒度 拟合误差 梯度下降法
在线阅读 下载PDF
自适应迭代算法支持向量集的特性研究 被引量:4
18
作者 杨晓伟 欧阳柏平 +2 位作者 余舒 吴春国 梁艳春 《吉林大学学报(信息科学版)》 CAS 2006年第2期153-157,共5页
针对在支持向量机研究中,传统的优化方法无法处理规模不断扩大的分类问题,为设计适应大样本分类的训练算法,提出了基于块的自适应迭代算法。在该算法的训练过程中,块增量学习和逆学习交替进行,能够自动得到一个小的支持向量集。将该算法... 针对在支持向量机研究中,传统的优化方法无法处理规模不断扩大的分类问题,为设计适应大样本分类的训练算法,提出了基于块的自适应迭代算法。在该算法的训练过程中,块增量学习和逆学习交替进行,能够自动得到一个小的支持向量集。将该算法与SVML ight在支持向量数量方面进行了比较,计算了UC I(Un i-versity of Californ ia-Irvine)中的6个数据集和著名的Checkboard问题。结果表明:该自适应迭代算法确定的支持向量数一般不到SVML ight所得到的支持向量数的一半,其中70%多的支持向量被SVML ight所确定的支持向量集所包含,在支持向量选择方面具有高效性。 展开更多
关键词 最小二乘支持向量机 自适应迭代算法 大样本分类 增量学习 逆学习
在线阅读 下载PDF
一类增量式支持向量机的分析 被引量:2
19
作者 郑关胜 王建东 +1 位作者 顾彬 於跃成 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第1期113-118,共6页
针对训练数据发生增量改变时,标准一类支持向量机的批处理算法需要重新进行训练,不适合在线增量环境学习的问题,提出一种详细的增量式标准一类分类向量机算法,并通过理论分析对该算法的可行性和有限收敛性进行了证明,确保该算法的每步... 针对训练数据发生增量改变时,标准一类支持向量机的批处理算法需要重新进行训练,不适合在线增量环境学习的问题,提出一种详细的增量式标准一类分类向量机算法,并通过理论分析对该算法的可行性和有限收敛性进行了证明,确保该算法的每步调整都是可靠的,并确保该算法通过有限步调整最终收敛到问题的最优解。在标准数据集上的实验结果验证了理论分析的正确性。 展开更多
关键词 一类支持向量机 增量式学习 可行性分析 收敛性分析
在线阅读 下载PDF
支持向量机增量学习算法研究 被引量:8
20
作者 李凯 黄厚宽 《北方交通大学学报》 CSCD 北大核心 2003年第5期34-37,共4页
给出了使用多支持向量机进行增量学习的算法.传统的支持向量机不具有增量学习性能,而常用的增量学习方法各具有不同的优缺点,基于固定划分和过间隔技术,提出了使用多支持向量机进行增量学习的算法;使用此算法,针对标准数据集BUPA及用ND... 给出了使用多支持向量机进行增量学习的算法.传统的支持向量机不具有增量学习性能,而常用的增量学习方法各具有不同的优缺点,基于固定划分和过间隔技术,提出了使用多支持向量机进行增量学习的算法;使用此算法,针对标准数据集BUPA及用NDC生成的数据集OUTTRAIN进行了实验,结果表明,使用单一的支持向量机进行增量学习,不论采用过间隔还是固定划分技术,其增量学习的正确率不及使用多支持向量机增量学习算法的正确率. 展开更多
关键词 支持向量机 增量学习 期望风险 固定划分 过间隔
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部