In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uni...In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field.展开更多
The backward-facing step is a critical problem existing in many engineering and industrial applications.In this study,a semi-porous baffle(the root of the baffle is a porous medium and the tip is solid) is placed behi...The backward-facing step is a critical problem existing in many engineering and industrial applications.In this study,a semi-porous baffle(the root of the baffle is a porous medium and the tip is solid) is placed behind the step.The effects of the length of the porous part,and the baffle location on the energy transfer and pressure drop are studied in different Reynolds numbers(Re=100,200,300,400,500).The effect of the Darcy number of the porous medium on the aforementioned parameters is also investigated.Both the local maximum and average relative Nusselt numbers(divided by the Nusselt of the base case with no baffle at the same Reynolds) and relative pressure drop(calculated as the relative Nusselt number) are reported.The results show that by adoption of the proper length of the porous medium,the average relative and maximum local Nusselt numbers could be enhanced by 20% and 90%,respectively.Low permeable porous media give better energy transfer.For example,porous media with Da=10^(-5) give 30% better maximum local Nusselt number and about 7% higher average Nusselt number with respect to the same case with Da=10^(-2).展开更多
Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the ...Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the position of the backward-facing step of the motor was computed and analyzed to determine a basic configuration.Two key geometrical parameters,the head cavity angle and submerged nozzle cavity height,were subsequently introduced.Their effects on the corner vortex motion and their interactions with the acoustic pressure downstream of the backward-facing step were analyzed.The phenomena of vortex acoustic coupling and characteristics of pressure oscillations were further explored.The results show that the maximum error between the simulations and experimental data on the dominant frequency of pressure oscillations is 5.23%,which indicates that the numerical methodology built in this study is highly accurate.When the step is located at less than 5/8 of the total length of the combustion chamber,vortex acoustic coupling occurs,which can increase the pressure oscillations in the motor.Both the vorticity and the scale of vortices in the downstream step increase when the head cavity angle is greater than 24°,which increases the amplitude of the pressure oscillation by maximum 63.0%.The submerged nozzle cavity mainly affects the vortices in the cavity itself rather than those in the downstream step.When the height of the cavity increases from 10 to 20 mm,the pressure oscillation amplitude under the main frequency increases by 39.1%.As this height continues to increase,the amplitude of pressure oscillations increases but the primary frequency decreases.展开更多
针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计...针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。展开更多
文摘In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field.
文摘The backward-facing step is a critical problem existing in many engineering and industrial applications.In this study,a semi-porous baffle(the root of the baffle is a porous medium and the tip is solid) is placed behind the step.The effects of the length of the porous part,and the baffle location on the energy transfer and pressure drop are studied in different Reynolds numbers(Re=100,200,300,400,500).The effect of the Darcy number of the porous medium on the aforementioned parameters is also investigated.Both the local maximum and average relative Nusselt numbers(divided by the Nusselt of the base case with no baffle at the same Reynolds) and relative pressure drop(calculated as the relative Nusselt number) are reported.The results show that by adoption of the proper length of the porous medium,the average relative and maximum local Nusselt numbers could be enhanced by 20% and 90%,respectively.Low permeable porous media give better energy transfer.For example,porous media with Da=10^(-5) give 30% better maximum local Nusselt number and about 7% higher average Nusselt number with respect to the same case with Da=10^(-2).
基金Sponsored by the Natural Science Foundation of Shaanxi Province (Grant No. S2025-JC-YB-0532)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (PF2024044)
文摘Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the position of the backward-facing step of the motor was computed and analyzed to determine a basic configuration.Two key geometrical parameters,the head cavity angle and submerged nozzle cavity height,were subsequently introduced.Their effects on the corner vortex motion and their interactions with the acoustic pressure downstream of the backward-facing step were analyzed.The phenomena of vortex acoustic coupling and characteristics of pressure oscillations were further explored.The results show that the maximum error between the simulations and experimental data on the dominant frequency of pressure oscillations is 5.23%,which indicates that the numerical methodology built in this study is highly accurate.When the step is located at less than 5/8 of the total length of the combustion chamber,vortex acoustic coupling occurs,which can increase the pressure oscillations in the motor.Both the vorticity and the scale of vortices in the downstream step increase when the head cavity angle is greater than 24°,which increases the amplitude of the pressure oscillation by maximum 63.0%.The submerged nozzle cavity mainly affects the vortices in the cavity itself rather than those in the downstream step.When the height of the cavity increases from 10 to 20 mm,the pressure oscillation amplitude under the main frequency increases by 39.1%.As this height continues to increase,the amplitude of pressure oscillations increases but the primary frequency decreases.
文摘针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。