A backstepping approach is proposed for the synchronization of chain networks of multi-spatiotemporal chaotic systems with topologically equivalent structures. The synchronization of multi-spatiotemporal chaotic syste...A backstepping approach is proposed for the synchronization of chain networks of multi-spatiotemporal chaotic systems with topologically equivalent structures. The synchronization of multi-spatiotemporal chaotic systems is imple- merited by adding the control only to a terminal node, and the controller is designed via a corresponding update law. The control law is applied to spatiotemporal Gray-Scott systems. Numerical results demonstrate the effectiveness and the feasibility of the proposed approach.展开更多
A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller desig...A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller designed for all admissible uncertainties can guarantee tha t all states of its closed loop system are uniformly bounded. The robust contro ller design algorithm and a sufficient condition of the system stability are giv en. In addition, the closed loop system has an ISS property when the multiplica tive time varying parametric uncertainties are viewed as inputs to the system. Thus, this design provides a way to prevent a destabilizing effect of the multip licative time varying parametric uncertainties. Finally, simulational example i s given and simulational result shows that the controller exhibits effectiveness and excellent robustness.展开更多
基金Project supported by the National Outstanding Young Scientists Foundation of China (Grant No. 10725209)the National Natural Science Foundation of China (Grant Nos. 90816001 and 10902064)+4 种基金the Shanghai Subject Chief Scientist Project, China (Grant No. 09XD1401700)the Shanghai Leading Talent Program and the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT0844)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082147)the Innovative Team Program of LiaoningEducational Committee, China (Grant No. 2008T108)
文摘A backstepping approach is proposed for the synchronization of chain networks of multi-spatiotemporal chaotic systems with topologically equivalent structures. The synchronization of multi-spatiotemporal chaotic systems is imple- merited by adding the control only to a terminal node, and the controller is designed via a corresponding update law. The control law is applied to spatiotemporal Gray-Scott systems. Numerical results demonstrate the effectiveness and the feasibility of the proposed approach.
文摘A class of triangular non li near system with disturbances which has unknown multiplicative time varying par ametric uncertainties in each virtual control is treated by a backstepping techn ique. The controller designed for all admissible uncertainties can guarantee tha t all states of its closed loop system are uniformly bounded. The robust contro ller design algorithm and a sufficient condition of the system stability are giv en. In addition, the closed loop system has an ISS property when the multiplica tive time varying parametric uncertainties are viewed as inputs to the system. Thus, this design provides a way to prevent a destabilizing effect of the multip licative time varying parametric uncertainties. Finally, simulational example i s given and simulational result shows that the controller exhibits effectiveness and excellent robustness.