The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique...The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.展开更多
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideratio...An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.展开更多
基于模块化多电平换流器的静止同步补偿器(stationary synchronous compensator based on modular multilevel converters,MMC-STATCOM)是高压电力系统中无功补偿的关键设备,其传统线性控制器性能会因运行点的大范围变化而恶化。针对该...基于模块化多电平换流器的静止同步补偿器(stationary synchronous compensator based on modular multilevel converters,MMC-STATCOM)是高压电力系统中无功补偿的关键设备,其传统线性控制器性能会因运行点的大范围变化而恶化。针对该问题,该文提出了一种基于滑模状态反馈精确线性化的非线性智能控制策略,首先通过选择合适的输出函数、坐标变换,将不做任何简化的3阶MMC-STATCOM非线性模型转化为一个可控的Brunovsky标准型线性系统,并通过数学理论证明了该模型满足精确线性化条件。然后采用改进的粒子群算法配置其反馈增益矩阵,利用积分滑模控制计算其平衡点。最后通过状态反馈使各个状态变量快速收敛至平衡点。将该控制策略与传统PI控制、LQR状态反馈控制通过硬件在环实时仿真平台进行对比实验,结果表明该控制策略具有更好的动态特性、暂态稳定性、鲁棒性,尤其适用于运行环境发生大扰动时。此外,该控制策略的设计过程可以拓展应用于其他类型的柔性交流输电装置。展开更多
文摘The objective of this research is to realize a composite nonlinear feedback control approach for a class of linear and nonlinear systems with parallel-distributed compensation along with sliding mode control technique.The proposed composite nonlinear feedback control approach consists of two parts.In a word,the first part provides the stability of the closed-loop system and the fast convergence response,as long as the second one improves transient response.In this research,the genetic algorithm in line with the fuzzy logic is designed to calculate constant controller coefficients and optimize the control effort.The effectiveness of the proposed design is demonstrated by servo position control system and inverted pendulum system with DC motor simulation results.
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
基金Project(114601034)supported by the Scholarship Award for Excellent Doctoral Students Granted by the Ministry of Education of ChinaProject(61273158)supported by the National Natural Science Foundation of China
文摘An adaptive current compensation control for a single-sided linear induction motor(SLIM) with nonlinear disturbance observer was developed. First, to maintain t-axis secondary component flux constant with consideration of the specially dynamic eddy-effect(DEE) of the SLIM, a instantaneously tracing compensation of m-axis current component was analyzed. Second,adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer(NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.
文摘基于模块化多电平换流器的静止同步补偿器(stationary synchronous compensator based on modular multilevel converters,MMC-STATCOM)是高压电力系统中无功补偿的关键设备,其传统线性控制器性能会因运行点的大范围变化而恶化。针对该问题,该文提出了一种基于滑模状态反馈精确线性化的非线性智能控制策略,首先通过选择合适的输出函数、坐标变换,将不做任何简化的3阶MMC-STATCOM非线性模型转化为一个可控的Brunovsky标准型线性系统,并通过数学理论证明了该模型满足精确线性化条件。然后采用改进的粒子群算法配置其反馈增益矩阵,利用积分滑模控制计算其平衡点。最后通过状态反馈使各个状态变量快速收敛至平衡点。将该控制策略与传统PI控制、LQR状态反馈控制通过硬件在环实时仿真平台进行对比实验,结果表明该控制策略具有更好的动态特性、暂态稳定性、鲁棒性,尤其适用于运行环境发生大扰动时。此外,该控制策略的设计过程可以拓展应用于其他类型的柔性交流输电装置。