In complex systems,functional dependency and physical dependency may have a coupling effect.In this paper,the reliability of a k-out-of-n system is analyzed considering load-sharing effect and failure mechanism(FM)pro...In complex systems,functional dependency and physical dependency may have a coupling effect.In this paper,the reliability of a k-out-of-n system is analyzed considering load-sharing effect and failure mechanism(FM)propagation.Three types of FMs are considered and an accumulative damage model is proposed to illustrate the system behavior of the k-out-of-n system and the coupling effect between load-sharing effect and FM propagation effect.A combinational algorithm based on Binary decision diagram(BDD)and Monte-Carlo simulation is presented to evaluate the complex system behavior and reliability of the k-out-of-n system.A current stabilizing system that consists of a 3-out-of-6 subsystem with FM propagation effect is presented as a case to illustrate the complex behavior and to verify the applicability of the proposed method.Due to the coupling effect change,the main mechanism and failure mode will be changed,and the system lifetime is shortened.Reasons are analyzed and results show that different sensitivity factors of three different FMs lead to the change of the development rate,thus changing the failure scenario.Neglecting the coupling effect may lead to an incomplete and ineffective measuring and monitoring plan.Design strategies must be adopted to make the FM propagation insensitive to load-sharing effect.展开更多
正交时频空(Orthogonal Time Frequency Space, OTFS)调制作为极具潜力的调制方案能够显著提升高移动场景下通信系统的鲁棒性。传统的OTFS同步消息传递(Message Passing, MP)检测算法及其变体每次迭代都需要更新并传递所有的信息,从而...正交时频空(Orthogonal Time Frequency Space, OTFS)调制作为极具潜力的调制方案能够显著提升高移动场景下通信系统的鲁棒性。传统的OTFS同步消息传递(Message Passing, MP)检测算法及其变体每次迭代都需要更新并传递所有的信息,从而导致收敛速度过慢。针对上述问题,提出基于残差的OTFS异步消息传递算法。该算法利用消息更新前后的差值作为知情调度信息来控制消息传递的顺序,从而实现迭代资源的非均匀分配。仿真结果表明,基于残差的OTFS异步消息传递算法相较于传统的同步消息传递算法,在信噪比为20 dB时,迭代次数减少了45%,误比特性能提高了7 dB。展开更多
基金This work was supported by the National Natural Science Foundation of China(61503014).
文摘In complex systems,functional dependency and physical dependency may have a coupling effect.In this paper,the reliability of a k-out-of-n system is analyzed considering load-sharing effect and failure mechanism(FM)propagation.Three types of FMs are considered and an accumulative damage model is proposed to illustrate the system behavior of the k-out-of-n system and the coupling effect between load-sharing effect and FM propagation effect.A combinational algorithm based on Binary decision diagram(BDD)and Monte-Carlo simulation is presented to evaluate the complex system behavior and reliability of the k-out-of-n system.A current stabilizing system that consists of a 3-out-of-6 subsystem with FM propagation effect is presented as a case to illustrate the complex behavior and to verify the applicability of the proposed method.Due to the coupling effect change,the main mechanism and failure mode will be changed,and the system lifetime is shortened.Reasons are analyzed and results show that different sensitivity factors of three different FMs lead to the change of the development rate,thus changing the failure scenario.Neglecting the coupling effect may lead to an incomplete and ineffective measuring and monitoring plan.Design strategies must be adopted to make the FM propagation insensitive to load-sharing effect.
文摘正交时频空(Orthogonal Time Frequency Space, OTFS)调制作为极具潜力的调制方案能够显著提升高移动场景下通信系统的鲁棒性。传统的OTFS同步消息传递(Message Passing, MP)检测算法及其变体每次迭代都需要更新并传递所有的信息,从而导致收敛速度过慢。针对上述问题,提出基于残差的OTFS异步消息传递算法。该算法利用消息更新前后的差值作为知情调度信息来控制消息传递的顺序,从而实现迭代资源的非均匀分配。仿真结果表明,基于残差的OTFS异步消息传递算法相较于传统的同步消息传递算法,在信噪比为20 dB时,迭代次数减少了45%,误比特性能提高了7 dB。