In this paper, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. We study the (2+1)-dimensional BKP...In this paper, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. We study the (2+1)-dimensional BKP equation and get a series of new types of traveling wave solutions. The method used here can be also extended to other nonlinear partial differential equations.展开更多
This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational funct...This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji et al in their auxiliary equation method. By using this method and these new solutions the com...Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji et al in their auxiliary equation method. By using this method and these new solutions the combined Korteweg-de Vries (KdV) and modified KdV (mKdV) equation and (2+1)-dimensional Broer-Kaup-Kupershmidt system are investigated and abundant exact travelling wave solutions are obtained that include new solitary wave solutions and triangular periodic wave solutions.展开更多
In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are...In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.展开更多
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B...In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.展开更多
By introducing an auxiliary ordinary differential equation and solving it by the method of variable separation abundant types of explicit and exact solutions for the double sinh-Gordon equation are derived in a simple...By introducing an auxiliary ordinary differential equation and solving it by the method of variable separation abundant types of explicit and exact solutions for the double sinh-Gordon equation are derived in a simple manner.展开更多
The equilibrium compositions and thermodynamic properties(density,enthalpy,etc at constant pressure)of plasma of pure gases and mixtures under local thermodynamic nonequilibrium have been calculated in this paper.The ...The equilibrium compositions and thermodynamic properties(density,enthalpy,etc at constant pressure)of plasma of pure gases and mixtures under local thermodynamic nonequilibrium have been calculated in this paper.The homotopy Levenberg-Marquardt algorithm was proposed to accurately solve nonlinear equations with singular Jacobian matrices,and is constructed by the Saha equation and Guldberg-Waage equation combined with mass conservation,the electric neutrality principle and Dalton’s partial pressure law,to solve the problem of dependence on the initial value in the process of iteration calculation.In this research,the equations at a higher temperature were solved and used as the auxiliary equations,and the homotopy control parameters’sequence of the homotopy equations was selected by equal ratios.For auxiliary equations,the iterative initial value was obtained by assuming that there were only the highestvalence atomic cations and electrons at this temperature,and the plasma equilibrium composition distribution with the required accuracy was ultimately solved under the current conditions employing the Levenberg-Marquardt algorithm.The control parameter sequence was arranged according to the geometric sequence and the homotopy step was gradually shortened to ensure continuity of the homotopy process.Finally,the equilibrium composition and thermodynamic properties of pure N_(2),Mg(30%)-CO_(2)(70%)and Mg(40%)-CO(50%)-N_(2)(10%)mixture plasma at atmospheric pressure were calculated and the calculation process of some specified temperatures was shown and analyzed.The calculation accuracy of equilibrium composition is higher than other findings in the literature.The results for the thermodynamic properties are in good agreement with data reported by the literature.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(10647112)
文摘In this paper, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. We study the (2+1)-dimensional BKP equation and get a series of new types of traveling wave solutions. The method used here can be also extended to other nonlinear partial differential equations.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010B17914) and the National Natural Science Foundation of China (Grant No. 10926162).
文摘This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
基金Project supported by the National Natural Science Foundation of China (Grant No 10472029).
文摘Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji et al in their auxiliary equation method. By using this method and these new solutions the combined Korteweg-de Vries (KdV) and modified KdV (mKdV) equation and (2+1)-dimensional Broer-Kaup-Kupershmidt system are investigated and abundant exact travelling wave solutions are obtained that include new solitary wave solutions and triangular periodic wave solutions.
基金Project supported by the Anhui Key Laboratory of Information Materials and Devices (Anhui University),China
文摘In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.
文摘In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.
基金supported by the National Natural Science Foundation of China (Grant No 10672053) the Natural Science Foundation of Hunan Province of China (Grant No 05JJ30007)the Scientific Research Fund of Hunan Institute of Science and Technology of China (Grant No 2007Y047)
文摘By introducing an auxiliary ordinary differential equation and solving it by the method of variable separation abundant types of explicit and exact solutions for the double sinh-Gordon equation are derived in a simple manner.
基金supported by the National Key Research and Development Program of China(No.2017YFA0700300)the Fundamental Research Funds for the Central Universities(No.N2025032)the Liaoning Provincial Natural Science Foundation(No.2020-MS-362)。
文摘The equilibrium compositions and thermodynamic properties(density,enthalpy,etc at constant pressure)of plasma of pure gases and mixtures under local thermodynamic nonequilibrium have been calculated in this paper.The homotopy Levenberg-Marquardt algorithm was proposed to accurately solve nonlinear equations with singular Jacobian matrices,and is constructed by the Saha equation and Guldberg-Waage equation combined with mass conservation,the electric neutrality principle and Dalton’s partial pressure law,to solve the problem of dependence on the initial value in the process of iteration calculation.In this research,the equations at a higher temperature were solved and used as the auxiliary equations,and the homotopy control parameters’sequence of the homotopy equations was selected by equal ratios.For auxiliary equations,the iterative initial value was obtained by assuming that there were only the highestvalence atomic cations and electrons at this temperature,and the plasma equilibrium composition distribution with the required accuracy was ultimately solved under the current conditions employing the Levenberg-Marquardt algorithm.The control parameter sequence was arranged according to the geometric sequence and the homotopy step was gradually shortened to ensure continuity of the homotopy process.Finally,the equilibrium composition and thermodynamic properties of pure N_(2),Mg(30%)-CO_(2)(70%)and Mg(40%)-CO(50%)-N_(2)(10%)mixture plasma at atmospheric pressure were calculated and the calculation process of some specified temperatures was shown and analyzed.The calculation accuracy of equilibrium composition is higher than other findings in the literature.The results for the thermodynamic properties are in good agreement with data reported by the literature.