期刊文献+
共找到338篇文章
< 1 2 17 >
每页显示 20 50 100
基于ARMA车速预测的智能车交叉口强化学习决策研究
1
作者 喻志成 赵俊鹏 +2 位作者 刘永刚 夏甫根 叶明 《重庆大学学报》 北大核心 2025年第10期68-80,共13页
为解决无信号交叉口的智能车决策控制问题,以双向单车道交叉口下两车合流工况为对象,采用强化学习方法开展研究,建立车辆状态空间到动作空间的映射。针对目前研究中环境车辆车速设置过于简单问题,以实际场景下采集的数据作为环境车辆的... 为解决无信号交叉口的智能车决策控制问题,以双向单车道交叉口下两车合流工况为对象,采用强化学习方法开展研究,建立车辆状态空间到动作空间的映射。针对目前研究中环境车辆车速设置过于简单问题,以实际场景下采集的数据作为环境车辆的轨迹信息构建场景模型。基于自回归滑动平均模型对环境车辆的车速进行预测。结合智能车及预测的环境车辆车速时序信息建立先行让行决策模型计算本车参考车速,引入参考车速构建强化学习的奖励函数加速训练收敛速度。结果表明:所提出的强化学习模型具有较快收敛速度,训练得到的智能体在与不同驾驶风格的环境车辆博弈时能安全通过交叉口,为无信号交叉口智能车安全通行决策控制提供参考依据。 展开更多
关键词 交叉口 自动驾驶 自回归滑动平均模型 强化学习
在线阅读 下载PDF
基于Transformer和ARMA双数据驱动模型的抽水蓄能机组劣化趋势集成预测
2
作者 钟子威 祝令凯 +3 位作者 郭俊山 郑威 巩志强 商攀峰 《水电能源科学》 北大核心 2025年第3期191-195,共5页
为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根... 为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根据分解所得分量的不同时间尺度特性,利用Transformer模型对非线性分量进行预测,利用ARMA模型对线性分量进行预测,最后将预测值叠加得到最终预测结果。利用某抽水蓄能机组监测数据进行试验,结果表明,所提方法具有较好的预测性能,能够有效提高抽水蓄能机组劣化趋势预测准确性。 展开更多
关键词 劣化趋势预测 完全自适应噪声集成经验模态分解 TRANSFORMER 自回归滑动平均
在线阅读 下载PDF
基于ARMAV模型和J-散度的结构损伤识别 被引量:2
3
作者 李孟 郭惠勇 《振动与冲击》 EI CSCD 北大核心 2024年第1期123-130,152,共9页
损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对... 损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对加速度时域数据进行消除激励相关性以及降噪处理;建立了ARMAV模型,并由模型的自回归参数和残差方差构建损伤判别指标;采用三层框架试验数据,并进行转播塔模型的损伤识别试验研究验证了该方法的有效性。结果表明:基于ARMAV模型和J-散度距离的损伤识别方法可操作性强,能够准确、高效地定位框架和塔架结构的损伤,且该方法受环境变化的影响较小,可为在线结构健康监测提供一种新思路。 展开更多
关键词 损伤识别 试验研究 向量自回归滑动平均(armaV)模型 J-散度 时间序列分析
在线阅读 下载PDF
基于ARIMA-LSTM的矿区地表沉降预测方法 被引量:4
4
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
基于GBD数据库分析与预测中国鼻咽癌疾病负担 被引量:1
5
作者 宋业勋 刘霞静 +1 位作者 张永全 李和清 《中南大学学报(医学版)》 北大核心 2025年第4期675-683,共9页
目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流... 目的:鼻咽癌发病位置隐匿导致早期诊断率低,且具有明显的地域聚集性,是中国一个重要的公共卫生问题。本研究旨在通过2021年全球疾病负担(the Global Burden of Diseases,GBD)数据库分析中国鼻咽癌的疾病负担,为鼻咽癌的精准防控提供流行病学依据。方法:选取年龄标化发病率、病死率、伤残调整寿命年(disability adjusted life year,DALY)率作为疾病负担的评价指标,按照不同年龄、性别、社会人口学指数及其相关危险因素进行分层分析,同时应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和贝叶斯年龄-时期-队列分析模型(Bayesian age-period-cohort,BAPC)将年龄标化发病率预测至2050年。结果:2021年中国鼻咽癌年龄标化发病率、病死率、DALY率分别为3.4/10万、1.5/10万、48.7/10万,均高于同期全球水平。在所有年龄段,中国男性年龄标化发病率、病死率、DALY率均高于女性。中国鼻咽癌的疾病负担从1990至2021年随着社会人口学指数(socio-demographic index,SDI)的增高逐渐降低。中国归因于饮酒、吸烟、职业甲醛暴露的鼻咽癌疾病负担占比均高于全球水平,且在男性中尤为显著。模型预测中国及全球男性、女性、全人群的年龄标化发病率均提示从2022至2050年呈上升趋势。结论:既往30年中国鼻咽癌的疾病负担随着SDI的升高逐渐降低,但仍高于同期全球水平。同时,中国鼻咽癌的年龄标化发病率在未来30年呈上升趋势。中国仍需进一步增加医疗资源的投入以应对鼻咽癌的防控与诊疗,尤其针对高风险男性群体。 展开更多
关键词 鼻咽癌 疾病负担 社会人口学指数 贝叶斯年龄-时期-队列分析模型 差分自回归移动平均模型
在线阅读 下载PDF
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测 被引量:1
6
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
在线阅读 下载PDF
分布式光伏功率预测的时空特征融合方法研究
7
作者 张晓辉 刘钰婷 +1 位作者 马锴 钟嘉庆 《中国电机工程学报》 北大核心 2025年第S1期231-244,共14页
准确的光伏功率预测对电网调度和电站运行具有重要意义。由于分布式光伏(distributed photovoltaics,DPV)系统受多种时空因素影响,传统基于单一模型的方法难以充分挖掘其时序变化规律与空间相关特性,导致预测精度低、模型适应性弱。该... 准确的光伏功率预测对电网调度和电站运行具有重要意义。由于分布式光伏(distributed photovoltaics,DPV)系统受多种时空因素影响,传统基于单一模型的方法难以充分挖掘其时序变化规律与空间相关特性,导致预测精度低、模型适应性弱。该文提出一种融合时空特征,结合麻雀搜索算法(sparrow search algorithm,SSA)优化极端梯度提升算法(extreme gradient boosting,XGBoost)和差分移动自回归平均(autoregressive integrated moving average,ARIMA)模型的DPV功率预测方法。首先,提出基于斯皮尔曼相关系数筛选与历史光伏功率高度相关的气象因素,并将其输入到SSA优化的XGBoost模型中,以提取和预测时间相关性特征;然后,结合日累计发电量与功率变化率,提出一种基于天气类型的光伏功率数据分类方法,并进一步提出利用斯皮尔曼分析识别与目标站点功率高度相关的参考电站;在此基础上,构建结合动态权重的ARIMA模型,实现对空间相关性特征的建模与预测;最后,提出一种基于信息熵加权的时空特征融合框架模型,根据时间与空间预测模型的误差动态调整其贡献度,生成融合预测结果。以f1电站为研究对象的对比实验结果表明,该文所提出的方法在预测精度与鲁棒性方面均优于传统单一模型,验证了其在DPV功率预测中的实用性和有效性。 展开更多
关键词 分布式光伏 时空特征融合 功率预测 麻雀搜索算法-极端梯度提升算法-差分移动自回归平均模型 信息熵
在线阅读 下载PDF
模型和数据联合驱动的ARIMA-IDSSA-LSSVM建筑安全事故预测
8
作者 曹红梅 陈元 《自然灾害学报》 北大核心 2025年第2期129-139,共11页
针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improv... 针对传统单一模型在解决建筑安全事故预测问题存在精度低等问题,考虑模型和数据联合驱动方式,提出一种结合差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型和改进的自适应樽海鞘优化最小二乘支持向量机(improved adaptive salp swarm algorithm optimized least squares support vector machine,IDSSA-LSSVM)的组合预测模型。首先利用ARIMA模型获得时序数据中线性部分,利用IDSSA-LSSVM模型分析ARIMA模型获得的残差,获得时序数据中非线性部分;然后通过线性部分和非线性部分相加获得最终组合预测值;最后通过2010—2020年房屋市政工程生产安全事故数据对所提算法进行验证。结果表明,所提预测模型在E_(rmse)上较其他算法分别下降73.73%、77.21%、46.09%、46.80%、78.19%,在E_(mae)上较其他算法分别下降74.20%、77.44%、48.15%、48.85%、77.50%,在E_(mape)上较其他算法分别下降84.95%、87.77%、75.97%、88.49%、80.27%。在不同规模的数据集下,文中算法在E_(rmse)指标下均最优。同时能够通过预测未来阶段事故,提供辅助决策。表明ARIMA-SSA-LSSVM组合模型能够充分挖掘建筑安全事故数据的隐藏信息,在准确性、泛化性和应用性3个角度均表现不错,优势明显。 展开更多
关键词 建筑安全 事故预测 联合驱动 差分自回归移动平均模型 支持向量机
在线阅读 下载PDF
基于自回归积分滑动平均模型的无线传感网络通信传输信号延迟消除方法
9
作者 崔蕾 王同 《传感技术学报》 北大核心 2025年第3期543-549,共7页
为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程... 为了解决受环境影响无线传感网络通信传输信号的延迟问题,提出了一种传输信号延迟消除的方法。将自回归积分滑动平均模型(ARIMA)和小波神经网络(WNN)相结合,进行通信传输信号延迟的组合预测。根据延迟预测结果设计传输信号延迟消除流程的步骤和约束条件,并以此构建无线传感网络通信传输的优化目标函数,引入免疫克隆蛙跳算法对目标函数进行求解,获取最优的传输方案。仿真分析表明,所提方法的延迟预测误差和端到端延迟误差低于0.01 s,能量消耗最大值为6.4 W,平均丢包率最大值为0.286%。上述结果证明了所提方法可以有效准确预测和消除无线传感网络通信传输信号延迟。 展开更多
关键词 无线传感网络 传输信号 延迟消除 自回归积分滑动平均模型 小波神经网络
在线阅读 下载PDF
考虑碳排放权交易风险的能源运营商-区域综合能源系统联盟混合博弈优化调度
10
作者 刘英培 信明垚 +1 位作者 秦浩然 单泓元 《电力自动化设备》 北大核心 2025年第6期15-22,49,共9页
随着碳排放权交易市场的不断完善,区域综合能源系统(RIES)在参与碳排放权交易时应充分考虑碳价波动的影响。为此,构建以能源运营商为主体、RIES联盟为从体的混合博弈架构。主体以最大化自身效益为目标制定购售电价策略,从体以供能成本... 随着碳排放权交易市场的不断完善,区域综合能源系统(RIES)在参与碳排放权交易时应充分考虑碳价波动的影响。为此,构建以能源运营商为主体、RIES联盟为从体的混合博弈架构。主体以最大化自身效益为目标制定购售电价策略,从体以供能成本和碳交易成本之和最小为目标进行热能交互,建立RIES联盟合作博弈模型。碳交易成本计及碳排放权价格的不确定性,利用自回归差分移动平均模型及广义自回归条件异方差模型预测调度日的碳价,结合条件风险价值,通过设定不同的风险偏好系数及置信度对碳交易价格波动风险进行量化。基于纳什谈判模型将合作博弈问题拆分成2个子问题,在降低联盟总成本的同时,合理分配RIES联盟的合作收益。通过仿真算例结合遗传算法验证所提策略的有效性,结果表明所提模型可以有效平衡系统的经济性和低碳性,降低碳排放权价格波动风险对调度决策的影响。 展开更多
关键词 区域综合能源系统 碳排放权交易风险 混合博弈 纳什谈判 条件风险价值 自回归差分移动平均模型 广义自回归条件异方差模型 优化调度
在线阅读 下载PDF
基于TTBiGRUA的碳价预测研究
11
作者 姚远 李晨硕 《南京信息工程大学学报》 北大核心 2025年第4期467-477,共11页
碳价格具有非线性、非平稳等复杂特征,其预测颇具挑战性.为了提高预测精度,提出一种结合时变滤波经验模态分解(Time-Varying Filter Empirical Mode Decomposition,TVFEMD)、样本熵(Sample Entropy,SE)、双向门控循环单元(Bidirectional... 碳价格具有非线性、非平稳等复杂特征,其预测颇具挑战性.为了提高预测精度,提出一种结合时变滤波经验模态分解(Time-Varying Filter Empirical Mode Decomposition,TVFEMD)、样本熵(Sample Entropy,SE)、双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)和差分整合移动平均自回归(Autoregressive Integrated Moving Average Model,ARIMA)的碳价预测模型TTBiGRUA.首先,通过TVFEMD将碳价格分解为不同频率的模态分量.其次,利用样本熵评估各分量复杂度,并采用K-means算法进行重构.随后,对重构后波动性最强的模态分量运用TVFEMD二次分解,以进一步提取特征并减少模态混叠.根据样本熵划分高频分量和低频分量.高频分量由BiGRU预测,低频分量则由ARIMA预测,最后将分量预测结果叠加得到碳价格最终预测结果.应用广东和湖北碳市场的实际碳价数据,使用5个评价指标和Diebold Mariano(DM)检验评估模型预测的有效性和鲁棒性.结果表明,所提出模型预测精度优于其他基准对比模型. 展开更多
关键词 碳价格预测 二次分解 时变滤波经验模态分解 样本熵 双向门控循环单元 差分整合移动平均自回归
在线阅读 下载PDF
基于高阶累积量ARMA模型线性非线性结合的地震子波提取方法研究 被引量:23
12
作者 戴永寿 王俊岭 +2 位作者 王伟伟 魏磊 王少水 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2008年第6期1851-1859,共9页
在地震子波非因果、混合相位的假设下,本文应用自回归滑动平均(ARMA)模型对地震子波进行参数化建模,并提出利用线性(矩阵方程法)和非线性(ARMA拟合方法)相结合的参数估计方式对该模型进行参数估计.在利用矩阵方程法确定模型参数范围的... 在地震子波非因果、混合相位的假设下,本文应用自回归滑动平均(ARMA)模型对地震子波进行参数化建模,并提出利用线性(矩阵方程法)和非线性(ARMA拟合方法)相结合的参数估计方式对该模型进行参数估计.在利用矩阵方程法确定模型参数范围的基础上,利用累积量拟合法精确估计参数.理论分析和仿真结果表明,该方式有较好的适应性:一方面提高了子波估计精度,避免单独使用矩阵方程法在短数据地震记录情况下可能带来的估计误差;另一方面提高了子波提取运算效率,降低了ARMA模型拟合方法参数范围确定的复杂性,避免了单纯使用滑动平均(MA)模型拟合法估计过多参数所导致的运算规模过大问题.初步应用结果表明该方法是有效可行的. 展开更多
关键词 高阶累积量 子波提取 自回归滑动平均 线性非线性结合
在线阅读 下载PDF
1990-2021年中国2型糖尿病肾病的疾病负担变化趋势及预测研究 被引量:2
13
作者 李书楠 张诗妍 +4 位作者 邓亚楠 胡丹青 郑雨心 李丹阳 李灿东 《中国全科医学》 北大核心 2025年第33期4214-4226,共13页
背景2型糖尿病肾病(T2DN)是2型糖尿病的主要慢性并发症之一,也是导致终末期肾病和心血管疾病的重要原因,给患者和社会带来沉重的疾病负担,已成为全球日益严峻的公共卫生挑战。目的本研究旨在基于全球疾病负担数据,分析中国T2DN疾病负担... 背景2型糖尿病肾病(T2DN)是2型糖尿病的主要慢性并发症之一,也是导致终末期肾病和心血管疾病的重要原因,给患者和社会带来沉重的疾病负担,已成为全球日益严峻的公共卫生挑战。目的本研究旨在基于全球疾病负担数据,分析中国T2DN疾病负担的变化趋势,预测T2DN至2050年的发展趋势,为T2DN防控和公共卫生政策提供数据支持。方法本研究以2021年全球疾病负担数据库(GBD 2021)为数据来源,提取1990—2021年中国T2DN的发病率、患病率、伤残调整生命年率(DALY率)和死亡率和作为评估T2DN疾病负担的指标。采用年度百分比变化估计值(EAPC)评估这些指标在不同性别和年龄组的变化趋势。采用自回归积分滑动平均(ARIMA)模型和指数平滑(ES)模型分别对不同性别和年龄组的各指标进行时间序列预测,并通过绝对百分比误差(APE)评估模型预测误差。结果1990—2021年,中国T2DN的年龄标准化发病率呈上升趋势(EAPC=0.42%,95%CI=0.34%~0.50%);年龄标准化患病率呈轻微下降趋势(EAPC=-0.24%,95%CI=-0.39%~-0.10%);年龄标准化DALY率呈轻微下降趋势(EAPC=-0.7%,95%CI=-0.8%~-0.6%);年龄标准化死亡率呈下降趋势(EAPC=-0.57%,95%CI=-0.66%~-0.49%)。按性别划分,女性年龄标准化发病率上升幅度相对较大(EAPC=0.6%,95%CI=0.49%~0.71%),男性上升幅度较小(EAPC=0.23%,95%CI=0.17%~0.29%);男性年龄标准化患病率下降幅度较女性更为明显(男性EAPC=-0.27%,95%CI=-0.41%~-0.13%;女性EAPC=-0.22%,95%CI=-0.37%~-0.07%);女性年龄标准化DALY率和死亡率呈显著下降趋势(DALY率EAPC=-1.13%,95%CI=-1.25%~-1.02%;死亡率EAPC=-1.10%,95%CI=-1.20%~-1.01%),男性变化较小(DALY率EAPC=-0.28%,95%CI=-0.40%~-0.15%;死亡率EAPC=-0.06%,95%CI=-0.19%~0.08%)。年龄别分析显示,各项疾病负担指标均随年龄增长而升高,高龄人群负担沉重,且部分高年龄组发病率和DALY率呈上升趋势。ARIMA模型预测结果显示,2050年男性年龄标准化发病率增至27.34/10万,患病率降至877.11/10万,DALY率保持在140.79/10万,死亡率保持在7.64/10万。女性年龄标准化发病率增至18.17/10万,患病率降至938.24/10万,DALY率降至69.66/10万,死亡率保持在4.77/10万。ES模型预测结果显示,2050年男性的年龄标准化发病率增至19.57/10万,患病率降至1055.85/10万,DALY率降至140.38/10万,死亡率保持在7.30/10万;女性的年龄标准化发病率增至16.49/10万,患病率增至1092.09/10万,DALY率降至105.84/10万,死亡率降至5.16/10万。模型误差评估显示,ES模型在大多数年龄标准化率和患病人数的预测上误差较小,而ARIMA模型在部分人数指标和女性年龄标准化死亡率上误差相对较小。结论1990—2021年,中国T2DN的整体疾病负担在年龄标准化后有所改善,尤其在死亡率和DALY率方面,但年龄标准化发病率持续上升,且疾病负担向高龄人群集中的趋势日益明显。本研究预测至2050年,中国新发病例仍将持续增加。应制定针对高风险人群,尤其是针对高龄人群和男性的精准防控策略,加强全科医学在慢病管理中的核心作用,以应对未来的公共卫生挑战。 展开更多
关键词 糖尿病肾病 糖尿病 2型 全球疾病负担 自回归积分滑动平均模型 指数平滑模型 预测
在线阅读 下载PDF
基于小波变换和GM-ARMA的导弹备件消耗预测 被引量:8
14
作者 赵建忠 徐廷学 +1 位作者 葛先军 尹延涛 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第4期553-558,共6页
针对导弹备件消耗呈现"小样本、非平稳"的特点,为了克服传统预测方法依靠大样本数据进行建模的不足,提出了把基于小波变换和改进GM-ARMA的组合预测方法应用于导弹备件消耗预测的构想.在利用小波分解和其他模型建立组合模型的... 针对导弹备件消耗呈现"小样本、非平稳"的特点,为了克服传统预测方法依靠大样本数据进行建模的不足,提出了把基于小波变换和改进GM-ARMA的组合预测方法应用于导弹备件消耗预测的构想.在利用小波分解和其他模型建立组合模型的过程中,提出了先对小波基方程和分解层数2个特征进行参数化,再定量地对所有子模型的特征参数进行统一、综合的评估,以达到建立最佳组合模型的目的;然后对具有平稳特性的高频信息用阻尼最小二乘法优化的ARMA(Autoregressive and Moving Average)模型进行预测,对反映整体趋势体现非平稳的低频信息用背景值优化和数据变换技术改进的GM(1,1)模型进行预测.实例结果表明所提出的组合预测方法大大降低了预测误差,说明了该方法的有效性、可行性和实用性. 展开更多
关键词 小波变换 灰色模型 自回归移动平均模型 备件 消耗预测
在线阅读 下载PDF
用对称映射ARMA模型的零极点研究子波相位对反射系数序列反演的影响 被引量:4
15
作者 张亚南 戴永寿 +3 位作者 陈健 魏玉琴 丁进杰 张漫漫 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2013年第6期2043-2054,共12页
为研究地震子波相位对反射系数序列反演的影响,在自回归滑动平均(ARMA)模型描述子波的基础上,提出采用z域对称映射ARMA模型零极点的方法构造了一系列相同振幅谱、不同相位谱的地震子波,并结合谱除法对人工合成地震记录进行反射系数序列... 为研究地震子波相位对反射系数序列反演的影响,在自回归滑动平均(ARMA)模型描述子波的基础上,提出采用z域对称映射ARMA模型零极点的方法构造了一系列相同振幅谱、不同相位谱的地震子波,并结合谱除法对人工合成地震记录进行反射系数序列反演.理论分析表明,子波相位估计不准时反射系数序列反演结果中残留一个纯相位滤波器,该纯相位滤波器的相位谱为真实子波和构造子波的相位谱之差.采用丰度和变分作为评价方法,在反演结果中确定出真实的或准确的反射系数序列.仿真实验和实际数据处理结果也验证了子波相位对反射系数序列反演的影响规律和评价方法的有效性,为进一步提高反射系数序列反演结果精度指明了研究方向. 展开更多
关键词 地震子波 反射系数序列反演 纯相位滤波器 自回归滑动平均模型 评价方法
在线阅读 下载PDF
高效ARMA模型高分辨率地震子波提取方法 被引量:4
16
作者 张亚南 戴永寿 +2 位作者 王少水 彭星 牛慧 《石油地球物理勘探》 EI CSCD 北大核心 2011年第5期686-694,836+660,共9页
ARMA模型的最大优点是用较少的参数描述一个精确的子波,超定阶容易造成计算量大、运算速度慢,欠定阶不能满足精确子波描述的要求。针对高阶累积量对特殊切片敏感,且在短时数据下应用效果差的问题,本文采用基于自相关函数的奇异值分解(S... ARMA模型的最大优点是用较少的参数描述一个精确的子波,超定阶容易造成计算量大、运算速度慢,欠定阶不能满足精确子波描述的要求。针对高阶累积量对特殊切片敏感,且在短时数据下应用效果差的问题,本文采用基于自相关函数的奇异值分解(SVD)法确定AR模型阶数,同时将信息量准则法与高阶累积量法相结合,提出了一种新的MA模型定阶法。数值仿真和实际地震数据处理结果均表明,本文所用方法可有效地压制加性高斯色噪声,信息量准则法可有效提高MA定阶的准确率,在保证子波精度的同时尽可能降低模型阶数,实现运算高效率。 展开更多
关键词 地震子波 高阶累积量 自回归滑动平均(arma) 奇异值分解(SVD) 信息量准则
在线阅读 下载PDF
基于类噪声信号和ARMA-P方法的振荡模态辨识 被引量:21
17
作者 吴超 陆超 +2 位作者 韩英铎 吴小辰 柳勇军 《电力系统自动化》 EI CSCD 北大核心 2010年第6期1-6,共6页
弱阻尼低频振荡是影响互联电网安全稳定运行的主要因素,振荡模态是表征系统振荡特性的重要参数,反映了各节点对振荡模式的参与情况。目前基于测量信号一般在振荡发生后进行模态分析,缺乏在系统正常运行情况下的分析手段。大量广域实测... 弱阻尼低频振荡是影响互联电网安全稳定运行的主要因素,振荡模态是表征系统振荡特性的重要参数,反映了各节点对振荡模式的参与情况。目前基于测量信号一般在振荡发生后进行模态分析,缺乏在系统正常运行情况下的分析手段。大量广域实测数据表明,因负荷的随机变化,电网内持续存在类似噪声信号的小幅波动。文中提出一种自回归滑动平均-Prony(ARMA-P)方法对这种类噪声信号进行处理,在采用ARMA模型拟合类噪声信号估计低频振荡模式参数的基础上,进一步建立信号的Prony模型,最终实现对低频振荡模态的辨识。将该方法用于对新英格兰系统仿真数据进行处理,其辨识结果与小干扰稳定计算结果进行了比较,并进一步将该方法用于处理南方电网实测数据,证明了其有效性。 展开更多
关键词 振荡模态 类噪声信号 自回归滑动平均-Prony方法
在线阅读 下载PDF
基于ARMA预测模型的交叉口车辆碰撞风险评估 被引量:8
18
作者 张良力 祝贺 +1 位作者 吴超仲 郑安文 《交通运输系统工程与信息》 EI CSCD 北大核心 2015年第5期239-245,共7页
车辆进入交叉口前的速度时间序列可用于预测车辆进入交叉口后若干步数速度值,利用车速预测值推算冲突方向车辆在交叉口内的行驶位移及其车间距离,可评估车辆发生碰撞的风险.针对交叉口附近车速分布符合随机序列特征,采用自回归滑动平均(... 车辆进入交叉口前的速度时间序列可用于预测车辆进入交叉口后若干步数速度值,利用车速预测值推算冲突方向车辆在交叉口内的行驶位移及其车间距离,可评估车辆发生碰撞的风险.针对交叉口附近车速分布符合随机序列特征,采用自回归滑动平均(ARMA)理论进行车速时序预测建模,步骤包括时序数据相关性检查、模型p-q定阶、解析式系数估计、适用性检验.试验结果表明:利用实测车速中的前40个时序数据建立ARMA模型,预测出的20个车速值与实测值贴近,冲突方向两车车速归一化平均绝对误差分别为0.006 56和0.003 4;利用全部60个实测数据建立预测模型,检测预测值残差自相关函数发现其绝对值均小于0.258 2,表明所建车速预测方法适用. 展开更多
关键词 智能交通 碰撞风险评估 自回归滑动平均建模 交叉路口 车速预测
在线阅读 下载PDF
基于改进灰色ARMA模型的卫星钟差短期预报研究 被引量:19
19
作者 李晓宇 杨洋 +1 位作者 胡晓粉 贾蕊溪 《大地测量与地球动力学》 CSCD 北大核心 2013年第1期59-63,共5页
导航卫星钟差的精度直接影响导航定位性能。针对卫星钟差由趋势项和随机项组成的特点,提出一种改进灰色模型和ARMA模型的钟差预报组合模型。对传统灰色模型进行改进并建立趋势项预报模型,提取钟差随机项建立ARMA模型,最后将预报结果相... 导航卫星钟差的精度直接影响导航定位性能。针对卫星钟差由趋势项和随机项组成的特点,提出一种改进灰色模型和ARMA模型的钟差预报组合模型。对传统灰色模型进行改进并建立趋势项预报模型,提取钟差随机项建立ARMA模型,最后将预报结果相加。在算例中采用IGS提供的精密钟差进行预报,仿真结果表明钟差精度较高。 展开更多
关键词 钟差预报 改进灰色模型 arma 组合模型 钟差精度
在线阅读 下载PDF
基于AR和ARMA模型的多变量非高斯风压模拟 被引量:3
20
作者 李锦华 李春祥 +1 位作者 邓莹 蒋磊 《振动与冲击》 EI CSCD 北大核心 2017年第24期103-107,123,共6页
基于多变量非高斯随机过程间的相关性,将发展的单变量非高斯过程自回归和自回归滑动平均(AR和ARMA)模型模拟算法扩展至多变量非高斯过程的数值模拟。通过AR和ARMA模型系数考虑多变量非高斯过程间的相关性,建立多变量非高斯过程AR和ARMA... 基于多变量非高斯随机过程间的相关性,将发展的单变量非高斯过程自回归和自回归滑动平均(AR和ARMA)模型模拟算法扩展至多变量非高斯过程的数值模拟。通过AR和ARMA模型系数考虑多变量非高斯过程间的相关性,建立多变量非高斯过程AR和ARMA模型的模拟算法。多变量非高斯风压的数值模拟表明:AR和ARMA模型算法能有效地模拟低斜度、中斜度和高斜度的多变量非高斯随机过程。 展开更多
关键词 多变量非高斯随机过程 非高斯脉动风压 自回归模型 自回归滑动平均模型
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部