期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于改进JRD及误差修正的轴承剩余寿命预测方法 被引量:1
1
作者 刘玉山 张旭帮 +2 位作者 王灵梅 孟恩隆 郭东杰 《机电工程》 北大核心 2024年第1期72-80,共9页
目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL... 目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL预测方法。首先,提取了振动信号样本的多域特征指标,利用高斯混合模型(GMM)与指数型权重JRD,得到了样本的后验概率分布向量,再经归一化处理得到置信值(CV);然后,对轴承从初始健康状态退化至当前检查时刻的CV值进行了相空间重构,提取了CV序列的动力学特征,并将其作为相关向量机(RVM)的训练集,获得了支撑整个退化轨迹的相关向量;最后,利用双指数模型拟合了相关向量,外推趋势至失效门限以计算RUL,并引入了差分整合移动平均自回归模型(ARIMA),对拟合相关向量产生的拟合误差进行了预测,以修正预测的结果。实验结果表明:改进后的退化指标单调性指标提高14.3%;且在不同工况、不同时刻下,经误差修正后的轴承的RUL预测结果较未修正之前有明显提高。研究结果表明:该预测方法可为风电机组齿轮箱重要部件的预测性维护提供参考。 展开更多
关键词 滚动轴承 剩余使用寿命预测 高斯混合模型 杰森-瑞丽散度 误差修正 双指数模型 置信值 差分整合移动平均自回归模型
在线阅读 下载PDF
基于误差补偿的多模态协同交通流预测模型 被引量:4
2
作者 吴宇轩 虞慧群 范贵生 《电子学报》 EI CAS CSCD 北大核心 2024年第8期2878-2890,共13页
交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensatio... 交通流量因受周期性特征、突发状况等多重因素影响,现有模型的预测精度无法满足实际要求.对此,本文提出了基于误差补偿的多模态协同交通流预测模型(Multimodal Collaborative traffic flow prediction model based on Error Compensation,MCEC).针对传统预测模型不能兼顾时间序列和协变量的问题,提出基于小波分析的特征拓展方法,该方法引入聚类算法得到节假日标签特征,将拥堵指数、交通事故图、天气信息作为拓展特征,对特征进行多尺度分解.在训练阶段,为达到充分学习各部分数据、最优匹配模型的效果,采用差分整合移动平均自回归模型(Autoreg Ressive Integrated Moving Average Model,ARIMA)、长短期记忆神经网络(Long Short-Term Memory network,LSTM)、限制动态时间规整技术(Dynamic Time Warping,DTW)以及自注意力机制(Self-Attention),设计了多模态协同模型训练.在误差补偿阶段,将得到的相应过程值输入基于支持向量机回归(Support Vector Regression,SVR)的误差补偿模块,对各分量的误差进行学习、补偿,并重构得到预测结果.使用公开的高速公路数据集对MCEC进行验证,在多个时间间隔下对比实验结果表明,MCEC在交通流量预测中的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)达到17.02%,比LSTM-SVR、ConvLSTM(Convolutional Long Short-Term Memory network)、ST-GCN(Spatial Temporal Graph Convolutional Networks)、MFFB(Multi-stream Feature Fusion Block)、Transformer等预测模型具有更高的预测精度,MCEC模型具有较好的有效性与合理性. 展开更多
关键词 交通流预测 误差补偿 多模态协同 长短期记忆神经网络 差分整合移动平均自回归模型
在线阅读 下载PDF
机床热误差自适应学习补偿方法研究 被引量:1
3
作者 沈明秀 《机械设计与制造》 北大核心 2024年第12期270-272,279,共4页
机床主轴在运行过程中,受热容易产生变形,从而造成机床加工后的产品精度下降。对此,设计了机床热误差自适应学习补偿控制方法,并对补偿前和补偿后的效果进行实验验证。给出了机床热误差自适应控制原理图,提出了一种用于识别和更新热误... 机床主轴在运行过程中,受热容易产生变形,从而造成机床加工后的产品精度下降。对此,设计了机床热误差自适应学习补偿控制方法,并对补偿前和补偿后的效果进行实验验证。给出了机床热误差自适应控制原理图,提出了一种用于识别和更新热误差的外生输入自回归模型。采用加权最小二乘法进行参数自适应更新,从而对机床运行产生的热误差进行补偿。设定热误差的动作控制限值,通过实验检验补偿前和补偿后机床热误差变化结果。结果显示:补偿前,机床运行一段时间后,在X和Z轴方向上产生的热误差较大,都超过了误差的设置范围;补偿后,机床运行一段时间后,产生的热误差较小,都保持在设置范围内。采用自适应学习补偿控制方法,能够降低机床产生的热误差,从而提高机床对产品的加工精度。 展开更多
关键词 机床 热误差 外生输入自回归模型 加权最小二乘法 补偿
在线阅读 下载PDF
基于线性多尺度模型的计算机网络数据流量预测 被引量:12
4
作者 段华琼 唐宾徽 《沈阳工业大学学报》 EI CAS 北大核心 2017年第3期322-327,共6页
为了解决网络安全监控问题,提出了一种用于预测网络流量的算法.通过多个不同尺度的线性模型进行网络数据的组合预测,每个尺度的线性模型由经过滤波器滤波后的部分原始数据估计得到,最终的预测流量数据由多个尺度线性模型的平均预测值得... 为了解决网络安全监控问题,提出了一种用于预测网络流量的算法.通过多个不同尺度的线性模型进行网络数据的组合预测,每个尺度的线性模型由经过滤波器滤波后的部分原始数据估计得到,最终的预测流量数据由多个尺度线性模型的平均预测值得到.选择的线性模型为自回归滑动平均模型,且尺度较小的线性模型对应自回归滑动平均模型的阶数较高.结果表明,本算法的预测精度高,整体预测误差的均值在10-3量级. 展开更多
关键词 网络流量 线性 多尺度 自回归滑动平均模型 预测 误差
在线阅读 下载PDF
人工胰脏中数据驱动个体血糖代谢模型的辨识 被引量:2
5
作者 李鹏 祝楠楠 +1 位作者 郁磊 王弼陡 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第3期714-720,共7页
数据驱动时间序列模型是人工胰脏系统中最常用的一类血糖预测模型,但其血糖预测精度受到进食不确定性和胰岛素敏感性波动等实际因素的影响。本文从真实血糖测量数据入手,提出基于卡尔曼滤波参数估计的带输入误差滑动平均模型的辨识方法... 数据驱动时间序列模型是人工胰脏系统中最常用的一类血糖预测模型,但其血糖预测精度受到进食不确定性和胰岛素敏感性波动等实际因素的影响。本文从真实血糖测量数据入手,提出基于卡尔曼滤波参数估计的带输入误差滑动平均模型的辨识方法,将辨识结果与最小二乘法辨识结果进行对比。结果表明,本文提出的辨识方法具有辨识精度高(FIT:90.05±3.12%v.s.54.41±9.56%)、能有效抵消实际因素的影响、对不同特征的个体能获得稳定的辨识结果等优势。 展开更多
关键词 卡尔曼滤波参数估计 带输入误差自回归滑动平均模型 数据驱动模型 个体化血糖代谢模型 人工胰脏
在线阅读 下载PDF
面向智能物联的动态负荷预测量子进化方法 被引量:6
6
作者 王铮 王宇乐 王万良 《计算机集成制造系统》 EI CSCD 北大核心 2018年第12期3027-3037,共11页
物联网与智能制造的结合导致大量制造数据的产生,为了实现基于大数据的智能制造电力负荷预测,提出并实现了一种智能物联云计算平台,实现用户与智能物联网之间双向通信控制的快速响应。提出一种基于改进外加输入的自回归滑动平均模型的... 物联网与智能制造的结合导致大量制造数据的产生,为了实现基于大数据的智能制造电力负荷预测,提出并实现了一种智能物联云计算平台,实现用户与智能物联网之间双向通信控制的快速响应。提出一种基于改进外加输入的自回归滑动平均模型的短期动态负荷预测模型,结合平台中的智能传感设备和历史负荷、天气变化等综合数据,作为预测模型的外部输入变量,并利用改进的实数编码量子进化算法对预测模型进行参数估计以提高动态负荷预测的准确性。利用智能制造企业的实际负荷数据,采用所提方法进行预测并与实际负荷数据及传统方法的预测结果进行比较,实验结果表明,所提方案和算法能够有效提高智能制造过程中短期动态负荷预测的精度,同时通过并行化计算提升负荷预测的速度。 展开更多
关键词 智能电网 智能制造 短期负荷预测 外加输入的自回归滑动平均模型 量子进化算法 云计算
在线阅读 下载PDF
压电作动器的支持向量机迟滞模型 被引量:8
7
作者 严秀权 吴洪涛 +2 位作者 李耀 杨小龙 康升征 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第9期228-235,共8页
压电作动器被广泛应用于高精度定位领域,但是其固有的迟滞非线性会严重影响定位精度。为了准确地描述压电作动器的迟滞特性,提出了一种基于非线性自回归移动平均(NARMAX)的支持向量机(SVM)迟滞模型。为了建立SVM迟滞模型,首先需要... 压电作动器被广泛应用于高精度定位领域,但是其固有的迟滞非线性会严重影响定位精度。为了准确地描述压电作动器的迟滞特性,提出了一种基于非线性自回归移动平均(NARMAX)的支持向量机(SVM)迟滞模型。为了建立SVM迟滞模型,首先需要将压电作动器的输入输出关系从一个多值映射问题转化为单值映射问题,对比了不同的单值映射对SVM迟滞模型精度及泛化能力的影响,提出了一种基于NARMAX构建单值映射的方法,建立了在全局上具有更高精度的压电作动器SVM迟滞模型。通过减小训练集中所包含输入信号频率的间隔,提高了模型在测试集上的精度。采用交叉验证的方法确定SVM模型中的参数,提高了迟滞模型在全局上的精度和泛化能力。结果表明,相比传统Bouc-Wen模型,所提出的模型在1 Hz处精度提高了8倍,在50 Hz处精度提高了60倍。通过位移跟踪实验,证明了基于SVM迟滞逆模型的前馈+反馈(FF+FB)控制能够有效提高跟踪精度,相较于PID反馈控制,其跟踪误差最多可降低73.9%。 展开更多
关键词 压电作动器 支持向量机 率相关迟滞建模 外部输入非线性自回归移动平均
在线阅读 下载PDF
基于二维区间自回归模型的烧结终点预测 被引量:5
8
作者 丁园 王斌 +1 位作者 鄢进冲 潘昪 《烧结球团》 北大核心 2017年第3期1-6,15,共7页
炼铁烧结生产过程中,烧结终点位置难以确定,建立二维区间自回归模型对烧结终点进行预测。在阐述模型原理的基础上,设计基于运动模式的二维区间自回归预测建模流程,包括构建自回归预测模型得到计算空间的模式类别变量,利用K近邻算法分类... 炼铁烧结生产过程中,烧结终点位置难以确定,建立二维区间自回归模型对烧结终点进行预测。在阐述模型原理的基础上,设计基于运动模式的二维区间自回归预测建模流程,包括构建自回归预测模型得到计算空间的模式类别变量,利用K近邻算法分类得到模式运动空间中的模式类别变量。采用实际烧结终点废气温度数据验证模型,包括采用主成分分析法对多个废气温度时间序列得到进行降维并形成二维数据空间;利用四叉树粒子群优化算法划分废气温度时间序列二维模式运动空间;引入二维区间数来度量模式类别变量;建立二维带输入的区间自回归模型(IARX)实现炼铁烧结终点预测。结果表明,与传统的一维区间自回归模型相比,所建模型预测准确度更高。 展开更多
关键词 烧结终点预测 二维带输入的区间自回归模型 运动模式 建模
在线阅读 下载PDF
ARIMA模型在卫星钟差短期预报中的应用 被引量:14
9
作者 姜诗奇 李博峰 《导航定位学报》 CSCD 2019年第4期118-124,共7页
为了减轻各国际全球卫星导航系统服务组织(IGS)分析中心的计算负担并解决在通信中断时,实时用户由于无法接收实时服务(RTS)产品而不能实现实时精密单点定位(RTPPP)的问题,提出采用求和自回归滑动平均(ARIMA)模型的短期预报钟差替代实时... 为了减轻各国际全球卫星导航系统服务组织(IGS)分析中心的计算负担并解决在通信中断时,实时用户由于无法接收实时服务(RTS)产品而不能实现实时精密单点定位(RTPPP)的问题,提出采用求和自回归滑动平均(ARIMA)模型的短期预报钟差替代实时钟差产品,并利用动态精密单点定位(PPP)分析ARIMA模型在不同拟合弧长和预报弧长下的钟差预报效果。结果表明,当拟合弧长大于1 h后,钟差预报精度不再随拟合弧长变化;当钟差预报弧长小于30 min时,动态PPP平面方向精度达到厘米级,当预报弧长为1 h时,动态PPP在E、N、U方向的精度优于0.2、0.1和0.3 m。 展开更多
关键词 自回归滑动平均模型 卫星钟差预报 精密单点定位 全球卫星导航系统
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部