The non-minimum phase feature of tail-controlled missile airframes is analyzed. Three selection strategies for desired performance indexes are presented. An acceleration autopilot design methodology based on output fe...The non-minimum phase feature of tail-controlled missile airframes is analyzed. Three selection strategies for desired performance indexes are presented. An acceleration autopilot design methodology based on output feedback and optimization is proposed. Performance and robustness comparisons between the two-loop and classical three-loop topologies are made. Attempts to improve the classical three-loop topology are discussed. Despite the same open-loop structure, the classical three-loop autopilot shows distinct characteristics from a two-loop autopilot with PI compensator. Both the two-loop and three-loop topologies can stabilize a static unstable missile. However, the finite actuator resource is the crucial factor dominating autopilot function.展开更多
Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) con...Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.展开更多
Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missi...Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missile control system more robust despite the uncertainty of the dynamical parameters and the presence of disturbances. Firstly, the nonlinear mathematical model of the tail-controlled missile is decomposed into slow acceleration dynamics and fast pitch rate dynamics based on the naturally existing time scale separation. Secondly, the controller based on DSC is designed after obtaining the linear dynamics characteristics of the slow and fast subsystems. An extended state observer is used to detect the uncertainty of the system state variables and aerodynamic parameters to achieve the compensation of the control law. The closed-loop stability of the controller is derived and rigorously analyzed. Finally, the effectiveness and robustness of the design is verified by Monte Carlo simulation considering different initial conditions and parameter uptake. Simulation results illustrate that the missile autopilot based DSC controller achieves better performance and robustness than the other two well-known autopilots.The method proposed in this paper is applied to the design of a missile autopilot, and the results show that the acceleration tracking autopilot based on the DSC controller can ensure accurate tracking of the required commands and has better performance.展开更多
According to requirements of the bank-to-turn (BTT) control for a small diameter bomb (SDB), the robust design problem for the roll autopilot was studied by H∞-mixed sensitivity control method. A roll channel dynamic...According to requirements of the bank-to-turn (BTT) control for a small diameter bomb (SDB), the robust design problem for the roll autopilot was studied by H∞-mixed sensitivity control method. A roll channel dynamics model was established. Considering the couple between the yaw and roll channel as uncertain disturbance, the roll autopilot was designed using dual-loop scheme which takes a linear quadratic regulator (LQR) as inner-loop, to ensure the control effect of the certain part in model, and an H∞-mixed sensitivity control as outer-loop, to restrain coupling disturbance and strengthen the system's robust performance. The dynamic tracking performance and the robustness for the parameter disturbance of the roll controller were analyzed. The simulated results show that the roll control system functions better and robustly.展开更多
The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control syst...The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control system (RCS) are presented. Subsequently, the cascade control scheme based on the bank-to-turn (B-I-T) steering technique is described. To address the aerodynamic un- certainties encountered by the control system, the active distur- bance rejection control (ADRC) method is introduced in the autopi- lot design. Furthermore, a compound controller, using extended state observer (ESO) to online estimate system uncertainties and calculate derivative of command signals, is designed based on dynamic surface control (DSC). Nonlinear simulation results show the feasibility of the proposed approach and validate the robust- ness of the controller with severe unmodeled dynamics.展开更多
为克服船舶自动舵实船测试中存在的风险大、调试周期长和费用高的缺点,并且方便科研人员对自动舵控制算法进行研究;以国际标准电子海图为显示平台,采用三自由度的Manoeuvring Mathematical Model Group(MMG)船舶数学模型,设计实现能提...为克服船舶自动舵实船测试中存在的风险大、调试周期长和费用高的缺点,并且方便科研人员对自动舵控制算法进行研究;以国际标准电子海图为显示平台,采用三自由度的Manoeuvring Mathematical Model Group(MMG)船舶数学模型,设计实现能提供与海上实际情况相近的船舶自动舵算法测试仿真系统,并详细说明该系统的构架、功能、控制接口和界面设计。以自抗扰航迹自动舵控制算法为例,在该系统上进行仿真测试,结果表明:该系统对测试自动舵算法的有效性有很大帮助,对自动舵算法的研究很有意义。展开更多
文摘The non-minimum phase feature of tail-controlled missile airframes is analyzed. Three selection strategies for desired performance indexes are presented. An acceleration autopilot design methodology based on output feedback and optimization is proposed. Performance and robustness comparisons between the two-loop and classical three-loop topologies are made. Attempts to improve the classical three-loop topology are discussed. Despite the same open-loop structure, the classical three-loop autopilot shows distinct characteristics from a two-loop autopilot with PI compensator. Both the two-loop and three-loop topologies can stabilize a static unstable missile. However, the finite actuator resource is the crucial factor dominating autopilot function.
文摘Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.
基金supported by Joint Fund of the Ministry of Education f or Equipment Pre-research (6141A20223)。
文摘Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missile control system more robust despite the uncertainty of the dynamical parameters and the presence of disturbances. Firstly, the nonlinear mathematical model of the tail-controlled missile is decomposed into slow acceleration dynamics and fast pitch rate dynamics based on the naturally existing time scale separation. Secondly, the controller based on DSC is designed after obtaining the linear dynamics characteristics of the slow and fast subsystems. An extended state observer is used to detect the uncertainty of the system state variables and aerodynamic parameters to achieve the compensation of the control law. The closed-loop stability of the controller is derived and rigorously analyzed. Finally, the effectiveness and robustness of the design is verified by Monte Carlo simulation considering different initial conditions and parameter uptake. Simulation results illustrate that the missile autopilot based DSC controller achieves better performance and robustness than the other two well-known autopilots.The method proposed in this paper is applied to the design of a missile autopilot, and the results show that the acceleration tracking autopilot based on the DSC controller can ensure accurate tracking of the required commands and has better performance.
基金Sponsored by National Ministries and Commissions Research Program in Advance (102080403)
文摘According to requirements of the bank-to-turn (BTT) control for a small diameter bomb (SDB), the robust design problem for the roll autopilot was studied by H∞-mixed sensitivity control method. A roll channel dynamics model was established. Considering the couple between the yaw and roll channel as uncertain disturbance, the roll autopilot was designed using dual-loop scheme which takes a linear quadratic regulator (LQR) as inner-loop, to ensure the control effect of the certain part in model, and an H∞-mixed sensitivity control as outer-loop, to restrain coupling disturbance and strengthen the system's robust performance. The dynamic tracking performance and the robustness for the parameter disturbance of the roll controller were analyzed. The simulated results show that the roll control system functions better and robustly.
基金supported by the National Natural Science Foundation of China(11202024)
文摘The approach to the synthesis of autopilot with aerody- namic uncertainty is investigated in order to achieve large maneu- verability of agile missiles. The dynamics of the agile missile with reaction-jet control system (RCS) are presented. Subsequently, the cascade control scheme based on the bank-to-turn (B-I-T) steering technique is described. To address the aerodynamic un- certainties encountered by the control system, the active distur- bance rejection control (ADRC) method is introduced in the autopi- lot design. Furthermore, a compound controller, using extended state observer (ESO) to online estimate system uncertainties and calculate derivative of command signals, is designed based on dynamic surface control (DSC). Nonlinear simulation results show the feasibility of the proposed approach and validate the robust- ness of the controller with severe unmodeled dynamics.
文摘为克服船舶自动舵实船测试中存在的风险大、调试周期长和费用高的缺点,并且方便科研人员对自动舵控制算法进行研究;以国际标准电子海图为显示平台,采用三自由度的Manoeuvring Mathematical Model Group(MMG)船舶数学模型,设计实现能提供与海上实际情况相近的船舶自动舵算法测试仿真系统,并详细说明该系统的构架、功能、控制接口和界面设计。以自抗扰航迹自动舵控制算法为例,在该系统上进行仿真测试,结果表明:该系统对测试自动舵算法的有效性有很大帮助,对自动舵算法的研究很有意义。