This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear featu...This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then utilizes the adaptive feature fusion algorithm which is based on the weighted maximum margin criterion (WMMC) to fuse the features in order to achieve better performance. The linear regression classifier is used in the experiments. The experimental results indicate that the proposed self-fusion algorithm achieves higher recognition rate compared with the traditional PCA and KPCA feature fusion algorithms.展开更多
Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D informa...Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%.展开更多
We explore the problem of in-plane rotation-invariance existing in the vertical detection of laser radar (Ladar) using the algorithm of spin-image surface matching. The method used to recognize the target in the ran...We explore the problem of in-plane rotation-invariance existing in the vertical detection of laser radar (Ladar) using the algorithm of spin-image surface matching. The method used to recognize the target in the range imagery of Ladar is time-consuming, owing to its complicated procedure, which violates the requirement of real-time target recognition in practical applications. To simplify the troublesome procedures, we improve the spin-image algorithm by introducing a statistical correlated coeff^cient into target recognition in range imagery of Ladar. The system performance is demonstrated on sixteen simulated noise range images with targets rotated through an arbitrary angle in plane. A high efficiency and an acceptable recognition rate obtained herein testify the validity of the improved algorithm for practical applications. The proposed algorithm not only solves the problem of in-plane rotation-invariance rationally, but also meets the real-time requirement. This paper ends with a comparison of the proposed method and the previous one.展开更多
The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as ...The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as feature vector for radar target recognition. The common feature extraction method for high resolution range profile obtained by using Fourier-modified direct Mellin transform is inefficient and unsatisfactory in recognition rate And. generally speaking, the automatic target recognition method based on inverse synthetic aperture radar 2-dimensional imaging is not competent for real time object identification task because it needs complicated motion compensation which is sometimes too difficult to carry out. While the method applied here is competent for real-time recognition because of its computational efficiency. The result of processing experimental data indicates that this method is good at recognition.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No. 61033012, No. 611003177, and No. 61070181Fundamental Research Funds for the Central Universities under Grant No.1600-852016 and No. DUT12JR07
文摘This paper proposes a PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm. This algorithm combines the linear feature extracted from principal component analysis (PCA) and nonlinear feature extracted from kernel principal component analysis (KPCA) respectively, and then utilizes the adaptive feature fusion algorithm which is based on the weighted maximum margin criterion (WMMC) to fuse the features in order to achieve better performance. The linear regression classifier is used in the experiments. The experimental results indicate that the proposed self-fusion algorithm achieves higher recognition rate compared with the traditional PCA and KPCA feature fusion algorithms.
基金This research was supported by National Natural Science Foundation of China(No.61271353,61871389)Major Funding Projects of National University of Defense Technology(No.ZK18-01-02)Foundation of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2018ZR09).
文摘Airborne LIDAR can flexibly obtain point cloud data with three-dimensional structural information,which can improve its effectiveness of automatic target recognition in the complex environment.Compared with 2D information,3D information performs better in separating objects and background.However,an aircraft platform can have a negative influence on LIDAR obtained data because of various flight attitudes,flight heights and atmospheric disturbances.A structure of global feature based 3D automatic target recognition method for airborne LIDAR is proposed,which is composed of offline phase and online phase.The performance of four global feature descriptors is compared.Considering the summed volume region(SVR) discrepancy in real objects,SVR selection is added into the pre-processing operations to eliminate mismatching clusters compared with the interested target.Highly reliable simulated data are obtained under various sensor’s altitudes,detection distances and atmospheric disturbances.The final experiments results show that the added step increases the recognition rate by above 2.4% and decreases the execution time by about 33%.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60901046)
文摘We explore the problem of in-plane rotation-invariance existing in the vertical detection of laser radar (Ladar) using the algorithm of spin-image surface matching. The method used to recognize the target in the range imagery of Ladar is time-consuming, owing to its complicated procedure, which violates the requirement of real-time target recognition in practical applications. To simplify the troublesome procedures, we improve the spin-image algorithm by introducing a statistical correlated coeff^cient into target recognition in range imagery of Ladar. The system performance is demonstrated on sixteen simulated noise range images with targets rotated through an arbitrary angle in plane. A high efficiency and an acceptable recognition rate obtained herein testify the validity of the improved algorithm for practical applications. The proposed algorithm not only solves the problem of in-plane rotation-invariance rationally, but also meets the real-time requirement. This paper ends with a comparison of the proposed method and the previous one.
文摘The normalized central moments are widely used in pattern recognition because of scale and translation invariance. The moduli of normalized central moments of the 1-dimensional complex range profiles are used here as feature vector for radar target recognition. The common feature extraction method for high resolution range profile obtained by using Fourier-modified direct Mellin transform is inefficient and unsatisfactory in recognition rate And. generally speaking, the automatic target recognition method based on inverse synthetic aperture radar 2-dimensional imaging is not competent for real time object identification task because it needs complicated motion compensation which is sometimes too difficult to carry out. While the method applied here is competent for real-time recognition because of its computational efficiency. The result of processing experimental data indicates that this method is good at recognition.