The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and perf...The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.展开更多
High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth...High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.展开更多
In order to control sintering process,improve permeability and stabilize burn through point, a control scheme which combines thermal state with permeability state is proposed, and an expert system for controlling sint...In order to control sintering process,improve permeability and stabilize burn through point, a control scheme which combines thermal state with permeability state is proposed, and an expert system for controlling sintering process state is developed, the software which includes about 1000 expert rules is successfully applied to off line control of sintering process.展开更多
Many process control systems are a kind of hybrid systems. In order to develop a satisfied control strategy, i. e., to make the whole system satisfy some processing requirements, the knowledge of plant is indispensabl...Many process control systems are a kind of hybrid systems. In order to develop a satisfied control strategy, i. e., to make the whole system satisfy some processing requirements, the knowledge of plant is indispensable. This paper proposes a formal model for the general plant for a kind of process control systems. Based on the model, requirements for the system can be specified from goals, and the controller can be designed according to plant based formal approach . An industrial process control system is used to illustrate our models and methods. Duration Calculus, a real time interval logic, is utilized to specify some characters of the model and development of control program for the exemplified system.展开更多
Process control is an effective approach to reduce the NO_(x) emission from sintering flue gas.The effects of different materials adhered on coke breeze on NO_(x) emission characteristics and sintering performance wer...Process control is an effective approach to reduce the NO_(x) emission from sintering flue gas.The effects of different materials adhered on coke breeze on NO_(x) emission characteristics and sintering performance were studied.Results showed that the coke breeze adhered with the mixture of CaO and Fe_(2)O_(3) or calcium ferrite significantly lowers the NO_(x) emission concentration and conversion ratio of fuel-N to NO_(x).Pretreating the coke with the mixture of lime slurry and iron ore fines helped to improve the granulation effect,and optimize the carbon distribution in granules.When the mass ratio of coke breeze,quick lime,water and iron ore fines was 2:1:1:1,the average NO_(x) emission concentration was decreased from 220 mg/m^(3) to 166 mg/m^(3),and the conversion ratio of fuel-N was reduced from 54.2%to 40.9%.展开更多
This paper bursts the bondage of conventional no-burn thought, presents an optimum strategy permitting burn appear in grinding roughing stage, but the burning layer can be summed on the following finishing stage. On t...This paper bursts the bondage of conventional no-burn thought, presents an optimum strategy permitting burn appear in grinding roughing stage, but the burning layer can be summed on the following finishing stage. On the base of the basic grinding models, the objective function and constrained functions for the multiparameter optimum grinding models had been built in this paper. By the computer simulation, the nonlinear optimum grinding control parameters had been obtained, and the truth grinding process had been controlled by these parameters. The results of simulation and the experiments proved the exactitude of the optimum models and the feasibility of the optimum strategy. This paper had also created the precondition for the grinding automation, virtual grinding and intelligent grinding system for cylindrical grinding process.展开更多
The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previ...The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption.展开更多
Mesoscale eddies are an important component of oceanic features.How to automatically identify these mesoscale eddies from available data has become an important research topic.Through careful examination of existing m...Mesoscale eddies are an important component of oceanic features.How to automatically identify these mesoscale eddies from available data has become an important research topic.Through careful examination of existing methods,we propose an improved,SSH-based automatic identification method.Using the inclusion relation of enclosed SSH contours,the mesoscale eddy boundary and core(s) can be automatically identified.The time evolution of eddies can be examined by a threshold search algorithm and a tracking algorithm based on similarity.Sea-surface height(SSH) data from Naval Research Laboratory Layered Ocean Model(NLOM) and sea-level anomaly(SLA) data from altimeter are used in the many experiments,in which different automatic identification methods are compared.Our results indicate that the improved method is able to extract the mesoscale eddy boundary more precisely,retaining the multiple-core structure.In combination with the tracking algorithm,this method can capture complete mesoscale eddy processes.It can thus provide reliable information for further study of reconstructing eddy dynamics,merging,splitting,and evolution of a multi-core structure.展开更多
软测量技术为工业过程中重要变量及难测变量的预测提供了一个有效的解决办法。然而,由于工业过程的复杂化和高昂的数据获取成本,使得标记数据与未标记数据分布不平衡。此时,构建高性能的软测量模型成为一个挑战。针对这一问题,提出了一...软测量技术为工业过程中重要变量及难测变量的预测提供了一个有效的解决办法。然而,由于工业过程的复杂化和高昂的数据获取成本,使得标记数据与未标记数据分布不平衡。此时,构建高性能的软测量模型成为一个挑战。针对这一问题,提出了一种基于时差的多输出tri-training异构软测量方法。通过构建一种新的tri-training框架,采用多输出的高斯过程回归(multi-output Gaussian process regression,MGPR)、相关向量机(multi-output relevance vector machine,MRVM)、最小二乘支持向量机(multi-output least squares support vector machine,MLSSVM)三种模型作为基线监督回归器,使用标记数据进行训练和迭代;同时,引入时间差分(time difference,TD)改进模型的动态特性,并通过卡尔曼滤波(Kalman filtering,KF)优化模型的参数,提高其预测性能;最后通过模拟污水处理平台(benchmark simulation model 1,BSM1)和实际污水处理厂对该模型进行了验证。结果表明,与传统的软测量建模方法相比,该模型能显著提高数据分布不平衡下软测量模型的自适应性和预测性能。展开更多
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,...This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.展开更多
The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning ...The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning control is a kind of control problem of systems with uncertain parameters. In order to realize accurate control of shell position, an optimal guaranteed cost control algorithm based on linear matrix inequality (LMI) theory was put forward. The motion equations of the magazine were built, and the motion equations for four special load situations were linearized; according to the basic theory of the guaranteed cost control, the motion equations were written as the standard forms for linear uncertain systems; the optimal guaranteed cost control law for the position control of the magazine was obtained by use of LMI toolbox in MATLAB package. Using this control law, the controlled dynamic simulation of the shell magazine was carried out. The simulation results indicate that the control algorithm has high control precision.展开更多
Thick metal plate rolling process has become more and more important in building a flat roof of drilling on the bottom at sea. This is because not only the product quality requirement higher and higher but also the ma...Thick metal plate rolling process has become more and more important in building a flat roof of drilling on the bottom at sea. This is because not only the product quality requirement higher and higher but also the marketing competition. To improve the process of thick metal plate rolling and to increase productivity a numerical controlled rolling process is developed, which include the process planning, the mathematical model establishment and the numerical control system development. The process is for the 17 000 kN×3 000 mm movable up roller bending machine. According to the machine configuration non-symmetry rolling process is planed. This makes it possible to integrate all the steps of plate shaping up such as end side bending, several times of semi-shape bending and the last shape finishing. Since the process will perform under the numerical controlled condition whole steps of the process are considered can be worked in the automatic cycle. The mathematic model consists of two sections, the theory model and the experience parameters model. Which takes the original plate parameters such as geometry and mechanics, characters of the machine such as the movement limits, tonnage and so on as input and calculates all the parameters needed in process performing. Meanwhile, the mathematic Model is totally adapted to the control system. The numerical control system development scheme is based on all the works above. Here, a system plan is provided. The functional modules and hardware selection, in detail, are introduced. The system software on top level and the controlling software for controller are developed. And some unit techniques in the system such as timer setting, communication between system and controller, video integration, and the ability of resisting impact force are introduced. The process has been used successfully in production for more than two years. Practice approves that the process is robust.展开更多
Achieving Six-Sigma process capability starts with l istening to the Voice of the Customers, and it becomes a reality by combining th e People Power and the Process Power of the organisation. This paper presents a Six...Achieving Six-Sigma process capability starts with l istening to the Voice of the Customers, and it becomes a reality by combining th e People Power and the Process Power of the organisation. This paper presents a Six-Sigma implementation case study carried out in a magnet manufacturing compa ny, which produces bearing magnets to be used in energy meters. If the thickness of the produced bearing magnets is between 2.35 mm and 2.50 mm, they will be ac cepted by the customers. All the time the company could not produce the bearing magnets within the specified thickness range, as their process distribution was flat with 2.20 mm as lower control limit and 2.60 mm as upper control limit. This resulted in a huge loss in the form of non-conformities, loss of time and goodwill. The process capability of the company then was around 0.40. Organisat ion restructuring was carried out to reap the benefit of the People Power of the organisation. Statistically designed experiments (Taguchi Method based Design o f Experiments), Online quality control tools (Statistical Process Control To ols) were effectively used to complete the DMAIC (Define, Measure, Analyse, Impr ove and Control) cycle to reap the benefit of the Process Power of the organisat ion. Presently the company enjoys a process capability of 1.75, a way towards Si x-Sigma Process Capability.展开更多
In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the con...In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.展开更多
Of the two methods of getting the mathematical model of a given system,modeling and i-dentification,the first is of the advantage of“knowing it in the detailed inside”.In this paper,after the common technological pr...Of the two methods of getting the mathematical model of a given system,modeling and i-dentification,the first is of the advantage of“knowing it in the detailed inside”.In this paper,after the common technological process of paper making is approached,a simplified physicalimitation and the mathematical model are presented.The resulted model by means of modelingis of the same form with that through,identification by K.J.Astrom in 1970.The course ofmodel deriving is described in detail,from which one can see clearly how the minor factors ofthe dynamics are omitted and what may be included in the unmodeled dynamics.At the sametime,the limit to its usage is also given.展开更多
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s...Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.展开更多
文摘The Ocean 4A scatterometer, expected to be launched in 2024, is poised to be the world’s first spaceborne microwave scatterometer utilizing a digital beamforming system. To ensure high-precision measurements and performance sta-bility across diverse environments, stringent requirements are placed on the dynamic range of its receiving system. This paper provides a detailed exposition of a field-programmable gate array (FPGA)-based automatic gain control (AGC) design for the spaceborne scatterometer. Implemented on an FPGA, the algo-rithm harnesses its parallel processing capabilities and high-speed performance to monitor the received echo signals in real time. Employing an adaptive AGC algorithm, the system gene-rates gain control codes applicable to the intermediate fre-quency variable attenuator, enabling rapid and stable adjust-ment of signal amplitudes from the intermediate frequency amplifier to an optimal range. By adopting a purely digital pro-cessing approach, experimental results demonstrate that the AGC algorithm exhibits several advantages, including fast con-vergence, strong flexibility, high precision, and outstanding sta-bility. This innovative design lays a solid foundation for the high-precision measurements of the Ocean 4A scatterometer, with potential implications for the future of spaceborne microwave scatterometers.
基金Natural Science Foundation of Shanghai(24ZR1400800)he Natural Science Foundation of China(U23A20685,52073058,91963204)+1 种基金the National Key R&D Program of China(2021YFB3701400)Shanghai Sailing Program(23YF1400200)。
文摘High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.
文摘In order to control sintering process,improve permeability and stabilize burn through point, a control scheme which combines thermal state with permeability state is proposed, and an expert system for controlling sintering process state is developed, the software which includes about 1000 expert rules is successfully applied to off line control of sintering process.
文摘Many process control systems are a kind of hybrid systems. In order to develop a satisfied control strategy, i. e., to make the whole system satisfy some processing requirements, the knowledge of plant is indispensable. This paper proposes a formal model for the general plant for a kind of process control systems. Based on the model, requirements for the system can be specified from goals, and the controller can be designed according to plant based formal approach . An industrial process control system is used to illustrate our models and methods. Duration Calculus, a real time interval logic, is utilized to specify some characters of the model and development of control program for the exemplified system.
基金Project(2017YFC0210302)supported by the National Key R&D Program of ChinaProjects(U1660206,U1760107)supported by the National Natural Science Foundation of China
文摘Process control is an effective approach to reduce the NO_(x) emission from sintering flue gas.The effects of different materials adhered on coke breeze on NO_(x) emission characteristics and sintering performance were studied.Results showed that the coke breeze adhered with the mixture of CaO and Fe_(2)O_(3) or calcium ferrite significantly lowers the NO_(x) emission concentration and conversion ratio of fuel-N to NO_(x).Pretreating the coke with the mixture of lime slurry and iron ore fines helped to improve the granulation effect,and optimize the carbon distribution in granules.When the mass ratio of coke breeze,quick lime,water and iron ore fines was 2:1:1:1,the average NO_(x) emission concentration was decreased from 220 mg/m^(3) to 166 mg/m^(3),and the conversion ratio of fuel-N was reduced from 54.2%to 40.9%.
文摘This paper bursts the bondage of conventional no-burn thought, presents an optimum strategy permitting burn appear in grinding roughing stage, but the burning layer can be summed on the following finishing stage. On the base of the basic grinding models, the objective function and constrained functions for the multiparameter optimum grinding models had been built in this paper. By the computer simulation, the nonlinear optimum grinding control parameters had been obtained, and the truth grinding process had been controlled by these parameters. The results of simulation and the experiments proved the exactitude of the optimum models and the feasibility of the optimum strategy. This paper had also created the precondition for the grinding automation, virtual grinding and intelligent grinding system for cylindrical grinding process.
基金Project(62073342)supported by the National Natural Science Foundation of ChinaProject(2014 AA 041803)supported by the Hi-tech Research and Development Program of China。
文摘The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption.
基金jointly supported by a grant from the National Natural Science Foundation of China(General Program)(41071250)Innovation Program of State Key Laboratory of Resources and Environmental Information System,Institute of Geographic SciencesNatural Resources Research,Chinese Academy of Sciences(088RA500KA)
文摘Mesoscale eddies are an important component of oceanic features.How to automatically identify these mesoscale eddies from available data has become an important research topic.Through careful examination of existing methods,we propose an improved,SSH-based automatic identification method.Using the inclusion relation of enclosed SSH contours,the mesoscale eddy boundary and core(s) can be automatically identified.The time evolution of eddies can be examined by a threshold search algorithm and a tracking algorithm based on similarity.Sea-surface height(SSH) data from Naval Research Laboratory Layered Ocean Model(NLOM) and sea-level anomaly(SLA) data from altimeter are used in the many experiments,in which different automatic identification methods are compared.Our results indicate that the improved method is able to extract the mesoscale eddy boundary more precisely,retaining the multiple-core structure.In combination with the tracking algorithm,this method can capture complete mesoscale eddy processes.It can thus provide reliable information for further study of reconstructing eddy dynamics,merging,splitting,and evolution of a multi-core structure.
文摘软测量技术为工业过程中重要变量及难测变量的预测提供了一个有效的解决办法。然而,由于工业过程的复杂化和高昂的数据获取成本,使得标记数据与未标记数据分布不平衡。此时,构建高性能的软测量模型成为一个挑战。针对这一问题,提出了一种基于时差的多输出tri-training异构软测量方法。通过构建一种新的tri-training框架,采用多输出的高斯过程回归(multi-output Gaussian process regression,MGPR)、相关向量机(multi-output relevance vector machine,MRVM)、最小二乘支持向量机(multi-output least squares support vector machine,MLSSVM)三种模型作为基线监督回归器,使用标记数据进行训练和迭代;同时,引入时间差分(time difference,TD)改进模型的动态特性,并通过卡尔曼滤波(Kalman filtering,KF)优化模型的参数,提高其预测性能;最后通过模拟污水处理平台(benchmark simulation model 1,BSM1)和实际污水处理厂对该模型进行了验证。结果表明,与传统的软测量建模方法相比,该模型能显著提高数据分布不平衡下软测量模型的自适应性和预测性能。
基金Supported by UK EPSRC (grants GR/N13319 and GR/R 10875)
文摘This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.
文摘The automatic chain shell magazine is the primary subassembly of the automatic ammunition loading system of a big-caliber howitzer. Due to the change of the shell amount in the magazine during firing, its positioning control is a kind of control problem of systems with uncertain parameters. In order to realize accurate control of shell position, an optimal guaranteed cost control algorithm based on linear matrix inequality (LMI) theory was put forward. The motion equations of the magazine were built, and the motion equations for four special load situations were linearized; according to the basic theory of the guaranteed cost control, the motion equations were written as the standard forms for linear uncertain systems; the optimal guaranteed cost control law for the position control of the magazine was obtained by use of LMI toolbox in MATLAB package. Using this control law, the controlled dynamic simulation of the shell magazine was carried out. The simulation results indicate that the control algorithm has high control precision.
文摘Thick metal plate rolling process has become more and more important in building a flat roof of drilling on the bottom at sea. This is because not only the product quality requirement higher and higher but also the marketing competition. To improve the process of thick metal plate rolling and to increase productivity a numerical controlled rolling process is developed, which include the process planning, the mathematical model establishment and the numerical control system development. The process is for the 17 000 kN×3 000 mm movable up roller bending machine. According to the machine configuration non-symmetry rolling process is planed. This makes it possible to integrate all the steps of plate shaping up such as end side bending, several times of semi-shape bending and the last shape finishing. Since the process will perform under the numerical controlled condition whole steps of the process are considered can be worked in the automatic cycle. The mathematic model consists of two sections, the theory model and the experience parameters model. Which takes the original plate parameters such as geometry and mechanics, characters of the machine such as the movement limits, tonnage and so on as input and calculates all the parameters needed in process performing. Meanwhile, the mathematic Model is totally adapted to the control system. The numerical control system development scheme is based on all the works above. Here, a system plan is provided. The functional modules and hardware selection, in detail, are introduced. The system software on top level and the controlling software for controller are developed. And some unit techniques in the system such as timer setting, communication between system and controller, video integration, and the ability of resisting impact force are introduced. The process has been used successfully in production for more than two years. Practice approves that the process is robust.
文摘Achieving Six-Sigma process capability starts with l istening to the Voice of the Customers, and it becomes a reality by combining th e People Power and the Process Power of the organisation. This paper presents a Six-Sigma implementation case study carried out in a magnet manufacturing compa ny, which produces bearing magnets to be used in energy meters. If the thickness of the produced bearing magnets is between 2.35 mm and 2.50 mm, they will be ac cepted by the customers. All the time the company could not produce the bearing magnets within the specified thickness range, as their process distribution was flat with 2.20 mm as lower control limit and 2.60 mm as upper control limit. This resulted in a huge loss in the form of non-conformities, loss of time and goodwill. The process capability of the company then was around 0.40. Organisat ion restructuring was carried out to reap the benefit of the People Power of the organisation. Statistically designed experiments (Taguchi Method based Design o f Experiments), Online quality control tools (Statistical Process Control To ols) were effectively used to complete the DMAIC (Define, Measure, Analyse, Impr ove and Control) cycle to reap the benefit of the Process Power of the organisat ion. Presently the company enjoys a process capability of 1.75, a way towards Si x-Sigma Process Capability.
文摘In this paper, a real-time computation method for the control problems in differential-algebraic systems is presented. The errors of the method are estimated, and the relation between the sampling stepsize and the controlled errors is analyzed. The stability analysis is done for a model problem, and the stability region is ploted which gives the range of the sampling stepsizes with which the stability of control process is guaranteed.
文摘Of the two methods of getting the mathematical model of a given system,modeling and i-dentification,the first is of the advantage of“knowing it in the detailed inside”.In this paper,after the common technological process of paper making is approached,a simplified physicalimitation and the mathematical model are presented.The resulted model by means of modelingis of the same form with that through,identification by K.J.Astrom in 1970.The course ofmodel deriving is described in detail,from which one can see clearly how the minor factors ofthe dynamics are omitted and what may be included in the unmodeled dynamics.At the sametime,the limit to its usage is also given.
基金funded by the National Natural Science Foundation of China Youth Fund(Grant No.62304022)Science and Technology on Electromechanical Dynamic Control Laboratory(China,Grant No.6142601012304)the 2022e2024 China Association for Science and Technology Innovation Integration Association Youth Talent Support Project(Grant No.2022QNRC001).
文摘Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.