期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Reconstruction of pile-up events using a one-dimensional convolutional autoencoder for the NEDA detector array
1
作者 J.M.Deltoro G.Jaworski +15 位作者 A.Goasduff V.González A.Gadea M.Palacz J.J.Valiente-Dobón J.Nyberg S.Casans A.E.Navarro-Antón E.Sanchis G.de Angelis A.Boujrad S.Coudert T.Dupasquier S.Ertürk O.Stezowski R.Wadsworth 《Nuclear Science and Techniques》 2025年第2期62-70,共9页
Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have ... Pulse pile-up is a problem in nuclear spectroscopy and nuclear reaction studies that occurs when two pulses overlap and distort each other,degrading the quality of energy and timing information.Different methods have been used for pile-up rejection,both digital and analogue,but some pile-up events may contain pulses of interest and need to be reconstructed.The paper proposes a new method for reconstructing pile-up events acquired with a neutron detector array(NEDA)using an one-dimensional convolutional autoencoder(1D-CAE).The datasets for training and testing the 1D-CAE are created from data acquired from the NEDA.The new pile-up signal reconstruction method is evaluated from the point of view of how similar the reconstructed signals are to the original ones.Furthermore,it is analysed considering the result of the neutron-gamma discrimination based on charge comparison,comparing the result obtained from original and reconstructed signals. 展开更多
关键词 1D-CAE autoencoder CAE Convolutional neural network(CNN) Neutron detector Neutron-gamma discrimination(NGD) Machine learning Pulse shape discrimination Pile-up pulse
在线阅读 下载PDF
Trusted Encrypted Traffic Intrusion Detection Method Based on Federated Learning and Autoencoder
2
作者 Wang Zixuan Miao Cheng +3 位作者 Xu Yuhua Li Zeyi Sun Zhixin Wang Pan 《China Communications》 SCIE CSCD 2024年第8期211-235,共25页
With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detecti... With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable. 展开更多
关键词 autoencoder federated learning intrusion detection model interpretation unsupervised learning
在线阅读 下载PDF
A strategy for out-of-roundness damage wheels identification in railway vehicles based on sparse autoencoders
3
作者 Jorge Magalhães Tomás Jorge +7 位作者 Rúben Silva António Guedes Diogo Ribeiro Andreia Meixedo Araliya Mosleh Cecília Vale Pedro Montenegro Alexandre Cury 《Railway Engineering Science》 EI 2024年第4期421-443,共23页
Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels... Wayside monitoring is a promising cost-effective alternative to predict damage in the rolling stock. The main goal of this work is to present an unsupervised methodology to identify out-of-roundness(OOR) damage wheels, such as wheel flats and polygonal wheels. This automatic damage identification algorithm is based on the vertical acceleration evaluated on the rails using a virtual wayside monitoring system and involves the application of a two-step procedure. The first step aims to define a confidence boundary by using(healthy) measurements evaluated on the rail constituting a baseline. The second step of the procedure involves classifying damage of predefined scenarios with different levels of severities. The proposed procedure is based on a machine learning methodology and includes the following stages:(1) data collection,(2) damage-sensitive feature extraction from the acquired responses using a neural network model, i.e., the sparse autoencoder(SAE),(3) data fusion based on the Mahalanobis distance, and(4) unsupervised feature classification by implementing outlier and cluster analysis. This procedure considers baseline responses at different speeds and rail irregularities to train the SAE model. Then, the trained SAE is capable to reconstruct test responses(not trained) allowing to compute the accumulative difference between original and reconstructed signals. The results prove the efficiency of the proposed approach in identifying the two most common types of OOR in railway wheels. 展开更多
关键词 OOR wheel damage Damage identification Sparse autoencoder Passenger trains Wayside condition monitoring
在线阅读 下载PDF
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder
4
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
在线阅读 下载PDF
Generalized autoencoder-based fault detection method for traction systems with performance degradation
5
作者 Chao Cheng Wenyu Liu +1 位作者 Lu Di Shenquan Wang 《High-Speed Railway》 2024年第3期180-186,共7页
Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To ... Fault diagnosis of traction systems is important for the safety operation of high-speed trains.Long-term operation of the trains will degrade the performance of systems,which decreases the fault detection accuracy.To solve this problem,this paper proposes a fault detection method developed by a Generalized Autoencoder(GAE)for systems with performance degradation.The advantage of this method is that it can accurately detect faults when the traction system of high-speed trains is affected by performance degradation.Regardless of the probability distribution,it can handle any data,and the GAE has extremely high sensitivity in anomaly detection.Finally,the effectiveness of this method is verified through the Traction Drive Control System(TDCS)platform.At different performance degradation levels,our method’s experimental results are superior to traditional methods. 展开更多
关键词 Performance degradation Generalized autoencoder Fault detection Traction control systems High-speed trains
在线阅读 下载PDF
基于AutoEncoder的增量式聚类算法 被引量:5
6
作者 原旭 杨镇楠 +1 位作者 赵亮 陈志奎 《微电子学与计算机》 CSCD 北大核心 2016年第3期120-124,共5页
针对目前数据量增长迅速,数据特征多,存储空间不足等问题,提出了基于AutoEncoder的增量式聚类算法(ANIC).首先利用AutoEncoder学习数据样本的特征,进行低维特征整合,得到数据样本的压缩表示形式,然后在原有聚类结果的基础上,通过一遍式... 针对目前数据量增长迅速,数据特征多,存储空间不足等问题,提出了基于AutoEncoder的增量式聚类算法(ANIC).首先利用AutoEncoder学习数据样本的特征,进行低维特征整合,得到数据样本的压缩表示形式,然后在原有聚类结果的基础上,通过一遍式读取数据和动态更新聚类中心点,对新生成样本进行增量式聚类.在对UCI的四个数据集进行聚类时,实验结果表明该算法能够得到优于k均值算法(Kmeans)和模糊c均值算法(FCM)的聚类效果.同时,该算法的时间消耗低,能够识别离群点,能够有效地对不断增加的数据集进行增量式聚类. 展开更多
关键词 autoencoder 增量聚类 特征学习 数据压缩
在线阅读 下载PDF
Improved Denoising Autoencoder for Maritime Image Denoising and Semantic Segmentation of USV 被引量:3
7
作者 Yuhang Qiu Yongcheng Yang +3 位作者 Zhijian Lin Pingping Chen Yang Luo Wenqi Huang 《China Communications》 SCIE CSCD 2020年第3期46-57,共12页
Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has r... Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has recently researched on autoencoder model used for image denoising,but the existed models are too complicated to be suitable for real-time detection of USV.In this paper,we proposed a lightweight autoencoder combined with inception module for maritime image denoising in different noisy environments and explore the effect of different inception modules on the denoising performance.Furthermore,we completed the semantic segmentation task for maritime images taken by USV utilizing the pretrained U-Net model with tuning,and compared them with original U-Net model based on different backbone.Subsequently,we compared the semantic segmentation of noised and denoised maritime images respectively to explore the effect of image noise on semantic segmentation performance.Case studies are provided to prove the feasibility of our proposed denoising and segmentation method.Finally,a simple integrated communication system combining image denoising and segmentation for USV is shown. 展开更多
关键词 USV DENOISING autoencoder SEMANTIC SEGMENTATION U-Net
在线阅读 下载PDF
Iterative learning-based many-objective history matching using deep neural network with stacked autoencoder 被引量:2
8
作者 Jaejun Kim Changhyup Park +3 位作者 Seongin Ahn Byeongcheol Kang Hyungsik Jung Ilsik Jang 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1465-1482,共18页
This paper presents an innovative data-integration that uses an iterative-learning method,a deep neural network(DNN)coupled with a stacked autoencoder(SAE)to solve issues encountered with many-objective history matchi... This paper presents an innovative data-integration that uses an iterative-learning method,a deep neural network(DNN)coupled with a stacked autoencoder(SAE)to solve issues encountered with many-objective history matching.The proposed method consists of a DNN-based inverse model with SAE-encoded static data and iterative updates of supervised-learning data are based on distance-based clustering schemes.DNN functions as an inverse model and results in encoded flattened data,while SAE,as a pre-trained neural network,successfully reduces dimensionality and reliably reconstructs geomodels.The iterative-learning method can improve the training data for DNN by showing the error reduction achieved with each iteration step.The proposed workflow shows the small mean absolute percentage error below 4%for all objective functions,while a typical multi-objective evolutionary algorithm fails to significantly reduce the initial population uncertainty.Iterative learning-based manyobjective history matching estimates the trends in water cuts that are not reliably included in dynamicdata matching.This confirms the proposed workflow constructs more plausible geo-models.The workflow would be a reliable alternative to overcome the less-convergent Pareto-based multi-objective evolutionary algorithm in the presence of geological uncertainty and varying objective functions. 展开更多
关键词 Deep neural network Stacked autoencoder History matching Iterative learning CLUSTERING Many-objective
在线阅读 下载PDF
Offline Urdu Nastaleeq Optical Character Recognition Based on Stacked Denoising Autoencoder 被引量:2
9
作者 Ibrar Ahmad Xiaojie Wang +1 位作者 Ruifan Li Shahid Rasheed 《China Communications》 SCIE CSCD 2017年第1期146-157,共12页
Offline Urdu Nastaleeq text recognition has long been a serious problem due to its very cursive nature. In order to get rid of the character segmentation problems, many researchers are shifting focus towards segmentat... Offline Urdu Nastaleeq text recognition has long been a serious problem due to its very cursive nature. In order to get rid of the character segmentation problems, many researchers are shifting focus towards segmentation free ligature based recognition approaches. Majority of the prevalent ligature based recognition systems heavily rely on hand-engineered feature extraction techniques. However, such techniques are more error prone and may often lead to a loss of useful information that might hardly be captured later by any manual features. Most of the prevalent Urdu Nastaleeq test recognition was trained and tested on small sets. This paper proposes the use of stacked denoising autoencoder for automatic feature extraction directly from raw pixel values of ligature images. Such deep learning networks have not been applied for the recognition of Urdu text thus far. Different stacked denoising autoencoders have been trained on 178573 ligatures with 3732 classes from un-degraded(noise free) UPTI(Urdu Printed Text Image) data set. Subsequently, trained networks are validated and tested on degraded versions of UPTI data set. The experimental results demonstrate accuracies in range of 93% to 96% which are better than the existing Urdu OCR systems for such large dataset of ligatures. 展开更多
关键词 offline printed ligature recognition urdu nastaleeq denoising autoencoder deep learning classification
在线阅读 下载PDF
Robust and Efficient Data Transmission over Noisy Communication Channels Using Stacked and Denoising Autoencoders 被引量:1
10
作者 Faisal Nadeem Khan Alan Pak Tao Lau 《China Communications》 SCIE CSCD 2019年第8期82-92,共11页
We study the effects of quantization and additive white Gaussian noise(AWGN) in transmitting latent representations of images over a noisy communication channel. The latent representations are obtained using autoencod... We study the effects of quantization and additive white Gaussian noise(AWGN) in transmitting latent representations of images over a noisy communication channel. The latent representations are obtained using autoencoders(AEs). We analyze image reconstruction and classification performance for different channel noise powers, latent vector sizes, and number of quantization bits used for the latent variables as well as AEs’ parameters. The results show that the digital transmission of latent representations using conventional AEs alone is extremely vulnerable to channel noise and quantization effects. We then propose a combination of basic AE and a denoising autoencoder(DAE) to denoise the corrupted latent vectors at the receiver. This approach demonstrates robustness against channel noise and quantization effects and enables a significant improvement in image reconstruction and classification performance particularly in adverse scenarios with high noise powers and significant quantization effects. 展开更多
关键词 COMMUNICATION CHANNELS data compression DEEP learning autoencoders DENOISING autoencoders
在线阅读 下载PDF
Hybrid Image Compression-Encryption Scheme Based on Multilayer Stacked Autoencoder and Logistic Map 被引量:1
11
作者 Neetu Gupta Ritu Vijay 《China Communications》 SCIE CSCD 2022年第1期238-252,共15页
Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is propos... Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission.. 展开更多
关键词 compression-encryption stacked autoencoder chaotic system back propagation algorithm logistic map
在线阅读 下载PDF
Autoencoder with Fitting Network for Terahertz Wireless Communications:A Deep Learning Approach
12
作者 Zhaohui Huang Dongxuan He +2 位作者 Jiaxuan Chen Zhaocheng Wang Sheng Chen 《China Communications》 SCIE CSCD 2022年第3期172-180,共9页
Terahertz wireless communication has been regarded as an emerging technology to satisfy the ever-increasing demand of ultra-high-speed wireless communications.However,affected by the imperfections of cheap and energy-... Terahertz wireless communication has been regarded as an emerging technology to satisfy the ever-increasing demand of ultra-high-speed wireless communications.However,affected by the imperfections of cheap and energy-efficient Terahertz devices,Terahertz signals suffer from serve hybrid distortions,including in-phase/quadrature imbalance,phase noise and nonlinearity,which degrade the demodulation performance significantly.To improve the robustness against these hybrid distortions,an improved autoencoder is proposed,which includes coding the transmitted symbols at the transmitter and decoding the corresponding signals at the receiver.Moreover,due to the lack of information of Terahertz channel during the training of the autoencoder,a fitting network is proposed to approximate the characteristics of Terahertz channel,which provides an approximation of the gradients of loss.Simulation results show that our proposed autoencoder with fitting network can recover the transmitted symbols under serious hybrid distortions,and improves the demodulation performance significantly. 展开更多
关键词 Terahertz wireless communication hybrid distortion signal demodulation autoencoder
在线阅读 下载PDF
基于自编码神经网络的装备体系评估指标约简方法 被引量:19
13
作者 张乐 刘忠 +1 位作者 张建强 任雄伟 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第10期4130-4137,共8页
基于现代战争的信息化程度、复杂性和不确定性不断提高,对武器装备体系(WSoS)作战效能的评估提出了更高的要求。为准确评估系统的作战效能,建立合理的作战效能评估指标体系非常关键,然而,影响作战效能的指标繁多,指标间存在冗余和相关性... 基于现代战争的信息化程度、复杂性和不确定性不断提高,对武器装备体系(WSoS)作战效能的评估提出了更高的要求。为准确评估系统的作战效能,建立合理的作战效能评估指标体系非常关键,然而,影响作战效能的指标繁多,指标间存在冗余和相关性,直接采用这些指标会增加后续效能评估的时空复杂度,在创建作战效能评估指标体系基础上,采用Autoencoder网络深度学习(Deep learning)方法实现评估指标集合的约简化,将复杂的指标体系非线性映射到低维的指标数据中,从而明显减少数据的维数,保留关键重要的指标,去除冗余的指标。实验结果表明:约简后的指标能够很好地代表原有的指标数据,从而明显降低后续作战效能评估工作的计算复杂度。 展开更多
关键词 武器装备体系 作战效能评估 autoencoder网络 深度学习
在线阅读 下载PDF
一种基于改进的无监督深度学习自编码方法 被引量:3
14
作者 夏永泉 黄海鹏 +1 位作者 王兵 支俊 《科技通报》 2018年第7期183-187,共5页
针对传统的Auto Encoder方法在全局特征提取上的高性能以及在图像识别上的重要性,本文提出了一种基于无监督局部深度特征学习的改进方法。首先对训练图像进行局部分块处理,其次采用Auto Encoder方法设计自编码网络进行深度训练,并使用... 针对传统的Auto Encoder方法在全局特征提取上的高性能以及在图像识别上的重要性,本文提出了一种基于无监督局部深度特征学习的改进方法。首先对训练图像进行局部分块处理,其次采用Auto Encoder方法设计自编码网络进行深度训练,并使用费舍尔向量结合空间金字塔匹配算法进行特征提取,最后通过线性SVM分类器来提高图像识别的准确率。实验结果表明:在MNIST数据集上,本文改进方法运算速度更快,更节约内存,同时具有更低的错误率。与传统方法相比,本文改进方法具有更好的准确性,鲁棒性。 展开更多
关键词 autoencoder 深度学习 费舍尔向量 空间金字塔匹配 图像识别
在线阅读 下载PDF
Primary User Adversarial Attacks on Deep Learning-Based Spectrum Sensing and the Defense Method 被引量:4
15
作者 Shilian Zheng Linhui Ye +5 位作者 Xuanye Wang Jinyin Chen Huaji Zhou Caiyi Lou Zhijin Zhao Xiaoniu Yang 《China Communications》 SCIE CSCD 2021年第12期94-107,共14页
The spectrum sensing model based on deep learning has achieved satisfying detection per-formence,but its robustness has not been verified.In this paper,we propose primary user adversarial attack(PUAA)to verify the rob... The spectrum sensing model based on deep learning has achieved satisfying detection per-formence,but its robustness has not been verified.In this paper,we propose primary user adversarial attack(PUAA)to verify the robustness of the deep learning based spectrum sensing model.PUAA adds a care-fully manufactured perturbation to the benign primary user signal,which greatly reduces the probability of detection of the spectrum sensing model.We design three PUAA methods in black box scenario.In or-der to defend against PUAA,we propose a defense method based on autoencoder named DeepFilter.We apply the long short-term memory network and the convolutional neural network together to DeepFilter,so that it can extract the temporal and local features of the input signal at the same time to achieve effective defense.Extensive experiments are conducted to eval-uate the attack effect of the designed PUAA method and the defense effect of DeepFilter.Results show that the three PUAA methods designed can greatly reduce the probability of detection of the deep learning-based spectrum sensing model.In addition,the experimen-tal results of the defense effect of DeepFilter show that DeepFilter can effectively defend against PUAA with-out affecting the detection performance of the model. 展开更多
关键词 spectrum sensing cognitive radio deep learning adversarial attack autoencoder DEFENSE
在线阅读 下载PDF
An Ensemble Detection Method for Shilling Attacks Based on Features of Automatic Extraction 被引量:3
16
作者 Yaojun Hao Fuzhi Zhang Jinbo Chao 《China Communications》 SCIE CSCD 2019年第8期130-146,共17页
Faced with the evolving attacks in recommender systems, many detection features have been proposed by human engineering and used in supervised or unsupervised detection methods. However, the detection features extract... Faced with the evolving attacks in recommender systems, many detection features have been proposed by human engineering and used in supervised or unsupervised detection methods. However, the detection features extracted by human engineering are usually aimed at some specific types of attacks. To further detect other new types of attacks, the traditional methods have to re-extract detection features with high knowledge cost. To address these limitations, the method for automatic extraction of robust features is proposed and then an Adaboost-based detection method is presented. Firstly, to obtain robust representation with prior knowledge, unlike uniform corruption rate in traditional mLDA(marginalized Linear Denoising Autoencoder), different corruption rates for items are calculated according to the ratings’ distribution. Secondly, the ratings sparsity is used to weight the mapping matrix to extract low-dimensional representation. Moreover, the uniform corruption rate is also set to the next layer in mSLDA(marginalized Stacked Linear Denoising Autoencoder) to extract the stable and robust user features. Finally, under the robust feature space, an Adaboost-based detection method is proposed to alleviate the imbalanced classification problem. Experimental results on the Netflix and Amazon review datasets indicate that the proposed method can effectively detect various attacks. 展开更多
关键词 shilling ATTACK ENSEMBLE detection FEATURES of AUTOMATIC EXTRACTION marginalized linear DENOISING autoencoder
在线阅读 下载PDF
Sparsity-Assisted Intelligent Condition Monitoring Method for Aero-engine Main Shaft Bearing 被引量:4
17
作者 DING Baoqing WU Jingyao +3 位作者 SUN Chuang WANG Shibin CHEN Xuefeng LI Yinghong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期508-516,共9页
Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted ... Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted intelligent condition monitoring method is proposed in this paper.Through analyzing the weakness of convex sparse model,i.e.the tradeoff between noise reduction and feature reconstruction,this paper proposes an enhanced-sparsity nonconvex regularized convex model based on Moreau envelope to achieve weak feature extraction.Accordingly,a sparsity-assisted deep convolutional variational autoencoders network is proposed,which achieves the intelligent identification of fault state through training denoised normal data.Finally,the effectiveness of the proposed method is verified through aero-engine bearing run-to-failure experiment.The comparison results show that the proposed method is good at abnormal pattern recognition,showing a good potential for weak fault intelligent diagnosis of aero-engine main shaft bearings. 展开更多
关键词 aero-engine main shaft bearing intelligent condition monitoring feature extraction sparse model variational autoencoders deep learning
在线阅读 下载PDF
An Effective Fault Diagnosis Method for Aero Engines Based on GSA-SAE 被引量:3
18
作者 CUI Jianguo TIAN Yan +4 位作者 CUI Xiao TANG Xiaochu WANG Jinglin JIANG Liying YU Mingyue 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期750-757,共8页
The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefor... The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefore,an effective fault diagnosis method for aero engines based on the gravitational search algorithm and the stack autoencoder(GSA-SAE)is proposed,and the fault diagnosis technology of a turbofan engine is studied.Firstly,the data of 17 parameters,including total inlet air temperature,high-pressure rotor speed,low-pressure rotor speed,turbine pressure ratio,total inlet air temperature of high-pressure compressor and outlet air pressure of high-pressure compressor and so on,are preprocessed,and the fault diagnosis model architecture of SAE is constructed.In order to solve the problem that the best diagnosis effect cannot be obtained due to manually setting the number of neurons in each hidden layer of SAE network,a GSA optimization algorithm for the SAE network is proposed to find and obtain the optimal number of neurons in each hidden layer of SAE network.Furthermore,an optimal fault diagnosis model based on GSA-SAE is established for aero engines.Finally,the effectiveness of the optimal GSA-SAE fault diagnosis model is demonstrated using the practical data of aero engines.The results illustrate that the proposed fault diagnosis method effectively solves the problem of the poor fault diagnosis result because of manually setting the number of neurons in each hidden layer of SAE network,and has good fault diagnosis efficiency.The fault diagnosis accuracy of the GSA-SAE model reaches 98.222%,which is significantly higher than that of SAE,the general regression neural network(GRNN)and the back propagation(BP)network fault diagnosis models. 展开更多
关键词 aero engines fault diagnosis optimization algorithm of gravitational search algorithm(GSA) stack autoencoder(SAE)network
在线阅读 下载PDF
基于深度学习的医疗数据智能分析与识别系统设计 被引量:6
19
作者 谷丽霞 刘欣芃 《电子设计工程》 2021年第10期46-50,共5页
针对医疗数据的智能化识别与分析需求,文中对医疗财务大数据挖掘的相关方法进行了研究。通过引入深度学习中的深度置信网络(DBN),结合Autoencoder自编码网络构建了数据处理系统,实现对医院经营状态的自动化评估。DBN网络使用受限玻尔兹... 针对医疗数据的智能化识别与分析需求,文中对医疗财务大数据挖掘的相关方法进行了研究。通过引入深度学习中的深度置信网络(DBN),结合Autoencoder自编码网络构建了数据处理系统,实现对医院经营状态的自动化评估。DBN网络使用受限玻尔兹曼机(RBM)替代了传统神经网络中神经元结构作为网络的隐藏层,该结构可以多个堆叠,提升网络的泛化能力。使用Gibbs抽样,得到RBM的近似分布,提升算法的训练效率。同时Autoencoder网络可以从大维度的财务经营数据中,筛选出更能描述数据特性的特征维度。为了验证系统算法的性能,在某医院的财务数据集上进行测试,使用Autoencoder自动提取17个财务数据指标作为模型的输入特征,以评估结果作为模型的输出向量。对比实验结果表明,相较于逻辑回归、BP神经网络等浅层的机器学习算法,文中算法的AUC与Accuracy分别可以达到0.81、80.0%,具有较为明显的提升。 展开更多
关键词 深度学习 DBN RBM autoencoder 医疗数据挖掘
在线阅读 下载PDF
Generative Neural Network Based Spectrum Sharing Using Linear Sum Assignment Problems
20
作者 Ahmed BZaky Joshua Zhexue Huang +1 位作者 Kaishun Wu Basem MElHalawany 《China Communications》 SCIE CSCD 2020年第2期14-29,共16页
Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solving such... Spectrum management and resource allocation(RA)problems are challenging and critical in a vast number of research areas such as wireless communications and computer networks.The traditional approaches for solving such problems usually consume time and memory,especially for large-size problems.Recently different machine learning approaches have been considered as potential promising techniques for combinatorial optimization problems,especially the generative model of the deep neural networks.In this work,we propose a resource allocation deep autoencoder network,as one of the promising generative models,for enabling spectrum sharing in underlay device-to-device(D2D)communication by solving linear sum assignment problems(LSAPs).Specifically,we investigate the performance of three different architectures for the conditional variational autoencoders(CVAE).The three proposed architecture are the convolutional neural network(CVAECNN)autoencoder,the feed-forward neural network(CVAE-FNN)autoencoder,and the hybrid(H-CVAE)autoencoder.The simulation results show that the proposed approach could be used as a replacement of the conventional RA techniques,such as the Hungarian algorithm,due to its ability to find solutions of LASPs of different sizes with high accuracy and very fast execution time.Moreover,the simulation results reveal that the accuracy of the proposed hybrid autoencoder architecture outperforms the other proposed architectures and the state-of-the-art DNN techniques. 展开更多
关键词 autoencoder linear sum assignment problems generative models resource allocation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部