期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Network Intrusion Detection Model Based on Ensemble of Denoising Adversarial Autoencoder 被引量:1
1
作者 KE Rui XING Bin +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期185-194,218,共11页
Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research si... Network security problems bring many imperceptible threats to the integrity of data and the reliability of device services,so proposing a network intrusion detection model with high reliability is of great research significance for network security.Due to the strong generalization of invalid features during training process,it is more difficult for single autoencoder intrusion detection model to obtain effective results.A network intrusion detection model based on the Ensemble of Denoising Adversarial Autoencoder(EDAAE)was proposed,which had higher accuracy and reliability compared to the traditional anomaly detection model.Using the adversarial learning idea of Adversarial Autoencoder(AAE),the discriminator module was added to the original model,and the encoder part was used as the generator.The distribution of the hidden space of the data generated by the encoder matched with the distribution of the original data.The generalization of the model to the invalid features was also reduced to improve the detection accuracy.At the same time,the denoising autoencoder and integrated operation was introduced to prevent overfitting in the adversarial learning process.Experiments on the CICIDS2018 traffic dataset showed that the proposed intrusion detection model achieves an Accuracy of 95.23%,which out performs traditional self-encoders and other existing intrusion detection models methods in terms of overall performance. 展开更多
关键词 Intrusion detection Noise-Reducing autoencoder Generative adversarial networks Integrated learning
在线阅读 下载PDF
融合Autoencoder方法的电力系统网络安全风险评估技术 被引量:12
2
作者 吉德志 秦丞 颜丽渊 《沈阳工业大学学报》 CAS 北大核心 2023年第4期366-370,共5页
针对现有电力系统安全评估指标存在高复杂度与低准确度等缺点,基于Autoencoder方法提出了适用于电力系统的网络安全风险评估方法.通过分析系统运行机制的脆弱性,使用层次分析法与专家调查法,建立了网络安全的初步评估指标体系模型.通过... 针对现有电力系统安全评估指标存在高复杂度与低准确度等缺点,基于Autoencoder方法提出了适用于电力系统的网络安全风险评估方法.通过分析系统运行机制的脆弱性,使用层次分析法与专家调查法,建立了网络安全的初步评估指标体系模型.通过引入Autoencoder方法对复杂的指标体系模型进行必要的约简与优化,形成电力系统的新型安全评估模型.仿真结果表明,与传统的安全评估模型相比,所提出模型具有更高的执行效率与评估准确度. 展开更多
关键词 电力系统 网络安全 风险评估 专家调查法 层次分析法 属性约简 autoencoder方法 重构误差
在线阅读 下载PDF
Reconstruction of time series with missing value using 2D representation-based denoising autoencoder 被引量:2
3
作者 TAO Huamin DENG Qiuqun XIAO Shanzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1087-1096,共10页
Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining t... Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining tasks.In this study,we propose a novel time series data representation-based denoising autoencoder(DAE)for the reconstruction of missing values.Two data representation methods,namely,recurrence plot(RP)and Gramian angular field(GAF),are used to transform the raw time series to a 2D matrix for establishing the temporal correlations between different time intervals and extracting the structural patterns from the time series.Then an improved DAE is proposed to reconstruct the missing values from the 2D representation of time series.A comprehensive comparison is conducted amongst the different representations on standard datasets.Results show that the 2D representations have a lower reconstruction error than the raw time series,and the RP representation provides the best outcome.This work provides useful insights into the better reconstruction of missing values in time series analysis to considerably improve the reliability of timevarying system. 展开更多
关键词 time series missing value 2D representation denoising autoencoder(DAE) RECONSTRUCTION
在线阅读 下载PDF
基于自编码神经网络的装备体系评估指标约简方法 被引量:19
4
作者 张乐 刘忠 +1 位作者 张建强 任雄伟 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第10期4130-4137,共8页
基于现代战争的信息化程度、复杂性和不确定性不断提高,对武器装备体系(WSoS)作战效能的评估提出了更高的要求。为准确评估系统的作战效能,建立合理的作战效能评估指标体系非常关键,然而,影响作战效能的指标繁多,指标间存在冗余和相关性... 基于现代战争的信息化程度、复杂性和不确定性不断提高,对武器装备体系(WSoS)作战效能的评估提出了更高的要求。为准确评估系统的作战效能,建立合理的作战效能评估指标体系非常关键,然而,影响作战效能的指标繁多,指标间存在冗余和相关性,直接采用这些指标会增加后续效能评估的时空复杂度,在创建作战效能评估指标体系基础上,采用Autoencoder网络深度学习(Deep learning)方法实现评估指标集合的约简化,将复杂的指标体系非线性映射到低维的指标数据中,从而明显减少数据的维数,保留关键重要的指标,去除冗余的指标。实验结果表明:约简后的指标能够很好地代表原有的指标数据,从而明显降低后续作战效能评估工作的计算复杂度。 展开更多
关键词 武器装备体系 作战效能评估 autoencoder网络 深度学习
在线阅读 下载PDF
3D点云形状补全GAN 被引量:4
5
作者 赵新灿 常寒星 金仁标 《计算机科学》 CSCD 北大核心 2021年第4期192-196,共5页
在真实的扫描环境中,由于视线遮挡或技术人员操作不当,实际采集到的点云模型会存在形状不完整的问题。点云模型的不完整性会对后续应用产生严重的影响,因此提出3D点云形状补全GAN用于完成点云模型的形状补全。该网络的点云重建部分由Poi... 在真实的扫描环境中,由于视线遮挡或技术人员操作不当,实际采集到的点云模型会存在形状不完整的问题。点云模型的不完整性会对后续应用产生严重的影响,因此提出3D点云形状补全GAN用于完成点云模型的形状补全。该网络的点云重建部分由PointNet中用于数据对齐的T-Net结构与3D点云AutoEncoder网络相结合,来完成预测和填充缺失数据,识别器采用3D点云AutoEncoder中的Encoder部分对补全3D点云数据与真实的3D点云数据进行区分。最后,在ShapeNet数据集中训练上述网络结构,对所训练的网络模型进行验证并与其他基准方法进行定性比较。从实验结果可以看出,3D点云形状补全GAN可以将具有缺失数据的点云模型补全为完整的3D点云。在ShapeNet的3个子数据集chair,table以及bed上,相比基于3D点云AutoEncoder的方法,所提方法的F 1分数分别提高了3.0%,3.3%以及3.1%,相比基于体素3D-EPN的方法,所提方法的F 1分数分别提高了9.9%,5.8%以及4.3%。 展开更多
关键词 3D点云 形状补全 autoencoder 生成对抗网络
在线阅读 下载PDF
Half space object classification via incident angle based fusion of radar and infrared sensors 被引量:2
6
作者 HE Zhenyu ZHUGE Xiaodong +3 位作者 WANG Junxiang YU Shihao XIE Yongjun ZHAO Yuxiong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1025-1031,共7页
In this paper,we introduce an incident angle based fusion method for radar and infrared sensors to improve the recognition rate of complex targets under half space scenarios,e.g.,vehicles on the ground in this paper.F... In this paper,we introduce an incident angle based fusion method for radar and infrared sensors to improve the recognition rate of complex targets under half space scenarios,e.g.,vehicles on the ground in this paper.For radar sensors,convolutional operation is introduced into the autoencoder,a“winner-take-all(WTA)”convolutional autoencoder(CAE)is used to improve the recognition rate of the radar high resolution range profile(HRRP).Moreover,different from the free space,the HRRP in half space is more complex.In order to get closer to the real situation,the half space HRRP is simulated as the dataset.The recognition rate has a growth more than 7%com-pared with the traditional CAE or denoised sparse autoencoder(DSAE).For infrared sensor,a convolutional neural network(CNN)is used for infrared image recognition.Finally,we com-bine the two results with the Dempster-Shafer(D-S)evidence theory,and the discounting operation is introduced in the fusion to improve the recognition rate.The recognition rate after fusion has a growth more than 7%compared with a single sensor.After the discounting operation,the accuracy rate has been improved by 1.5%,which validates the effectiveness of the proposed method. 展开更多
关键词 convolutional autoencoder(CAE) half space high-resolution range profile(HRRP) incident angle based fusion tar-get recognition
在线阅读 下载PDF
基于深度神经网络的高环境适应性水声通信系统研究 被引量:1
7
作者 付晓梅 贾碧群 王思宁 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第10期178-186,共9页
深度神经网络中的自动编码器(Autoencoder,AE)通过收发端两个神经网络模块进行全局优化,利用端到端的训练方式以提高通信系统的可靠性.然而,现有对AE的研究未针对信道进行特殊设计,尤其对于时变的水声信道的多径效应,难以进行灵活调整,... 深度神经网络中的自动编码器(Autoencoder,AE)通过收发端两个神经网络模块进行全局优化,利用端到端的训练方式以提高通信系统的可靠性.然而,现有对AE的研究未针对信道进行特殊设计,尤其对于时变的水声信道的多径效应,难以进行灵活调整,降低了该方法的实用性.本文提出一种提高水声通信系统信道环境适应性的Attention-Autoencoder网络模型,基于Attention网络可以高效地从大量信息中筛选出关键信息的特点,设计了一种针对水声信道的Attention机制,该机制能够增加网络提取水声信道特征的能力,使系统的适应性大大提高.仿真验证和湖试实验结果表明,基于Attention-Autoencoder网络模型的通信系统与基于文献中AE模型和没有引入神经网络的水声通信系统相比,具有更高的信道环境适应性. 展开更多
关键词 OFDM 水声通信 注意力网络(Attention) 自动编码器(autoencoder AE)
在线阅读 下载PDF
UCAV situation assessment method based on C-LSHADE-Means and SAE-LVQ
8
作者 XIE Lei TANG Shangqin +2 位作者 WEI Zhenglei XUAN Yongbo WANG Xiaofei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1235-1251,共17页
The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low ac... The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low accuracy and strong dependence on prior knowledge,a datadriven situation assessment method is proposed.The clustering and classification are combined,the former is used to mine situational knowledge,and the latter is used to realize rapid assessment.Angle evaluation factor and distance evaluation factor are proposed to transform multi-dimensional air combat information into two-dimensional features.A convolution success-history based adaptive differential evolution with linear population size reduc-tion-means(C-LSHADE-Means)algorithm is proposed.The convolutional pooling layer is used to compress the size of data and preserve the distribution characteristics.The LSHADE algorithm is used to initialize the center of the mean clustering,which over-comes the defect of initialization sensitivity.Comparing experi-ment with the seven clustering algorithms is done on the UCI data set,through four clustering indexes,and it proves that the method proposed in this paper has better clustering performance.A situation assessment model based on stacked autoen-coder and learning vector quantization(SAE-LVQ)network is constructed,and it uses SAE to reconstruct air combat data fea-tures,and uses the self-competition layer of the LVQ to achieve efficient classification.Compared with the five kinds of assess-ments models,the SAE-LVQ model has the highest accuracy.Finally,three kinds of confrontation processes from air combat maneuvering instrumentation(ACMI)are selected,and the model in this paper is used for situation assessment.The assessment results are in line with the actual situation. 展开更多
关键词 unmanned combat aerial vehicle(UCAV) situation assessment clustering K-MEANS stacked autoencoder learn-ing vector quantization
在线阅读 下载PDF
一种基于GAN的政务数据中模糊图像复原算法研究
9
作者 宣文静 张欣玥 《现代电子技术》 2025年第18期134-138,共5页
政务数据中包含大量图像数据,这些图像在记录关键信息时具有至关重要的作用。然而,政务图像中常出现的模糊现象为信息的提取和利用带来了极大的困扰。为处理这一难题,提出一种基于GAN的模糊图像复原算法(GovRGAN)。该算法利用GAN实现图... 政务数据中包含大量图像数据,这些图像在记录关键信息时具有至关重要的作用。然而,政务图像中常出现的模糊现象为信息的提取和利用带来了极大的困扰。为处理这一难题,提出一种基于GAN的模糊图像复原算法(GovRGAN)。该算法利用GAN实现图像复原,可有效学习并恢复图像的细节信息,其结构主要分为生成器和判别器两部分。首先,利用已训练的U-Net权重参数为GAN的生成器进行预训练。随后,采用卷积神经网络作为判别器,区分真实图像与生成器生成的图像。为了验证算法的有效性,构建一个包含1500张发票凭证的政务数据集,旨在为模型提供充足且多样的训练样本。此外,还使用了运动模糊和焦点模糊进行退化处理,使数据更贴近现实中的模糊图像。而后在该数据集上,将GovRGAN与AutoEncoder网络、U-Net做对比实验,验证了GovRGAN在复原政务模糊图像方面展现出出色的性能,复原后的图像质量得到了显著提升。特别是在运动模糊数据集上,与U-Net相比,所提算法的PSNR和SSIM值分别提高了9.664 dB和0.157。 展开更多
关键词 政务数据处理 模糊图像复原 生成对抗网络 卷积神经网络 autoencoder网络 U-Net网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部