Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage...Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons.展开更多
Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and the...Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and thermal comfort.However,the low optical modulation and poor durability of these devices severely limit its practical applications.Herein,we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life,but also displays a high capacitance and a high energy recycling efficiency of 51.4%,integrating energy-saving with energy-storage.The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1%and 85.3%at 633 and 1200 nm respectively.The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life(3.3%capacity loss after 10,000 cycles)and a high energy-saving performance(8.8℃lower than the common glass).Furthermore,simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world.Such windows represent an intriguing potential technology to improve the building energy efficiency.展开更多
Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must m...Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed.展开更多
Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency ...Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.展开更多
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th...Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.展开更多
Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we obser...Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we observed a larger increase of off-state leakage in the short channel device than in long one. However, a larger threshold voltage shift is observed for the narrow width device than for the wide one, which is well known as the radiation induced narrow channel effect. The radiation induced charge in the shallow trench isolation oxide influences the electric field of the narrow channel device. Also, the drain bias dependence of the off-state leakage after irradiation is observed, which is called the radiation enhanced drain induced barrier lowing effect. Finally, we found that substrate bias voltage can suppress the off-state leakage, while leading to more obvious hump effect.展开更多
Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to ins...Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.展开更多
High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use i...High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.展开更多
With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispec...With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.展开更多
The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflect...The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.展开更多
Objective To evaluate the effect of point-of-care hemoglobin/hematocrit(POC HGB/HCT) devices and intraoperative blood salvage on the amount of perioperative allogeneic blood transfusion and blood conservation in clini...Objective To evaluate the effect of point-of-care hemoglobin/hematocrit(POC HGB/HCT) devices and intraoperative blood salvage on the amount of perioperative allogeneic blood transfusion and blood conservation in clinical practice. Methods A total of 46 378 medical records of 22 selected hospitals were reviewed. The volume of allogeneic red blood cell and plasma, number of patients transfused, number of intraoperative autologous blood salvage, total volume of autologous blood transfusion, and amount of surgery in the year of 2011 and 2013 were tracked. Paired t-test was used in intra-group comparison, while t-test of two isolated samples carried out in inter-group comparison. P<0.05 was defined as statistically significant difference. Results In the hospitals where POC HGB/HCT device was used(n=9), the average allogeneic blood transfusion volume per 100 surgical cases in 2013 was significantly lower than that in 2011(39.86±20.20 vs. 30.49±17.50 Units, t=3.522, P=0.008). In the hospitals without POC HGB/HCT meter, the index was not significantly different between 2013 and 2011. The average allogeneic blood transfusion volume was significantly reduced in 2013 than in 2011 in the hospitals where intraoperative autologous blood salvage ratio [autologous transfusion volume/(autologous transfusion volume+allogeneic transfusion volume)] was increased(n=12, t=2.290, P=0.042). No significant difference of the above index was found in the hospitals whose autologous transfusion ratio did not grow. Conclusion Intraoperative usage of POC HGB/HCT devices and increasing autologous transfusion ratio could reduce perioperative allogeneic blood transfusion.展开更多
The anchoring eccentricity of the bolt and cable bolt is a common problem in geotechnical support engineering and affects the ability of the bolt and cable bolt to control the rock mass to a certain extent.This paper ...The anchoring eccentricity of the bolt and cable bolt is a common problem in geotechnical support engineering and affects the ability of the bolt and cable bolt to control the rock mass to a certain extent.This paper reports on numerical simulation and laboratory experiments conducted to clarify the effect of eccentricity on the anchoring quality of the bolt and cable bolt,and to establish an effective solution strategy.The results reveal that the anchoring eccentricity causes unbalanced stress distribution and the uncoordinated deformation of the resin layer,which results in higher stress and greater deformation of the resin layer at the near side of the rod body.Additionally,as the degree of anchoring eccentricity increases,the effect becomes more significant,and the resin layer of the anchoring system becomes more likely to undergo preferential failure locally,which weakens the load-bearing performance of the anchoring system.This paper develops an innovative bolt anchoring rectifying device(B-ARD)and cable bolt anchoring rectifying device(C-ARD)on the basis of the structural characteristics of the bolt and cable bolt to better ensure the anchoring effect of them.The working effects of these two devices were verified in detailed experiments and analysis.The experimental results show that the anchoring rectifying devices(ARD)improve and ensure the anchoring concentricity of the bolt and cable bolt,which will help improve the supporting performance of them.The paper provides a convenient and effective method for improving the anchoring concentricity of the bolt and cable bolt,and provides a concept and reference for technical research on improving the effect of roof bolting.展开更多
Abstract Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were p...Abstract Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were prepared with an automatic device, which was composed of a loading and unloading module, a quantitatively adding solution module, a rapid heating and drying module and a precise rotating module. The experimental results showed that the sample preparation methods had no significant effect on sample distribution and the LIBS signal accumulated in 20 pulses was stable and repeatable. With an increasing amount of the sample solution on the graphite flake, the peak intensity at Cu I 324.75 nm accorded with the exponential function with a correlation coefficient of 0.9963 and the background intensity remained unchanged. The limit of detection (LOD) was calculated through linear fitting of the peak intensity versus the concentration. The LOD decreased rapidly with an increasing amount of sample solution until the amount exceeded 20 mL and the correlation coefficient of exponential function fitting was 0.991. The LOD of Pb, Ni, Cd, Cr and Zn after evaporating different amounts of sample solution on the graphite flakes was measured and the variation tendency of their LOD with sample solution amounts was similar to the tendency for Cu. The experimental data and conclusions could provide a reference for automatic sample preparation and heavy metal in situ detection.展开更多
The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLP...The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLPS-ITER program is employed to examine the effects of the magnetic field strength and neutral pressure in the device on the heat flux experienced by the target plate of the HIT-PSI device.The findings of the numerical simulation indicate a positive correlation between the magnetic field strength and the heat flux density.Conversely,there is a negative correlation observed between the heat flux density and the neutral pressure.When the magnetic field strength at the axis exceeds 1 tesla and the neutral pressure falls below 10 Pa,the HIT-PSI has the capability to attain a heat flux of 10 MW·m-2 at the target plate.The simulation results offer a valuable point of reference for subsequent experiments at HIT-PSI.展开更多
Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions...Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions are irradiated on a thyristor device for a long time,the electrical characteristics of the device change,which may eventually cause irreversible damage.In this study,with the thyristor switch of the commutation circuit in the quench protection system(QPS)of a fusion device as the study object,the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established.Subsequently,a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis.In addition,the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation,providing valuable guidelines for the maintenance and renovation of the QPS.展开更多
Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance(MR)effect in a low static magnetic field environment at roo...Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance(MR)effect in a low static magnetic field environment at room temperature.However,how to obtain a large room-temperature negative MR effect in them remains to be studied.In this paper,by designing an Au/n-Ge:Sb/Au device with metal electrodes located on identical side,we observe an obvious room-temperature negative MR effect in a specific 50 T pulsed high magnetic field direction environment,but not in a static low magnetic field environment.Through the analysis of the experimental measurement of the Hall effect results and bipolar transport theory,we propose that this unconventional negative MR effect is mainly related to the charge accumulation on the surface of the device under the modulation of the stronger Lorentz force provided by the pulsed high magnetic field.This theoretical analytical model is further confirmed by regulating the geometry size of the device.Our work sheds light on the development of novel magnetic sensing,magnetic logic and other devices based on non-magnetic semiconductors operating in pulsed high magnetic field environment.展开更多
The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazo...The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazomethine,and polyamide)were synthesized to ascertain the superior performer.The polyamide exhibited remarkable attributes,including high redox stability during 500 repetitive CVs,optical contrast of 61.98%,rapid response times of 1.02 and 1.38 s for coloring and bleaching,EC efficiency of 280 cm^(2)C^(-1).and decays of the optical density and EC efficiency of only 12.18%and 6.23%after 1000 cycles.Then,the energy storage performance of polyamide PA was tested,for which the following parameters were obtained:74.7 F g^(-1)(CV,scan rate of 10 mV s^(-1))and 118 F g^(-1)(GCD,charging current of 0.1 A g^(-1)).Then,the polyamide was tested in EES devices,which yielded the following EC parameters:an optical contrast of 62.15%,response times of 9.24 and 5.01 s for coloring and bleaching,EC efficiency of 178 cm^(2)C^(-1),and moderate decays of 20.25%and 23.24%for the optical density and EC efficiency after 500 cycles.The energy storage performance included a capacitance of 106 F g^(-1)(CV,scan rate of 0.1 mV s^(-1))and 9.23 F g^(-1)(GCD,charging current of 0.1 A g^(-1)),capacitance decay of 11.9%after500 cycles,and 1.7 V retention after 2 h.Also,two EES devices connected in series powered a 3 V LED for almost 30 s.展开更多
Charge trapping devices incorporating 2D materials and high-κdielectrics have emerged as promising candidates for compact,multifunctional memory devices compatible with silicon-based manufacturing processes.However,t...Charge trapping devices incorporating 2D materials and high-κdielectrics have emerged as promising candidates for compact,multifunctional memory devices compatible with silicon-based manufacturing processes.However,traditional charge trapping devices encounter bottlenecks including complex device structure and low operation speed.Here,we demonstrate an ultrafast reconfigurable direct charge trapping device utilizing only a 30 nm-thick Al_(2)O_(3)trapping layer with a MoS_(2)channel,where charge traps reside within the Al_(2)O_(3)bulk confirmed by transfer curves with different gatevoltage sweeping rates and photoluminescence(PL)spectra.The direct charging tapping device shows exceptional memory performance in both three-terminal and two-terminal operation modes characterized by ultrafast three-terminal operation speed(~300 ns),an extremely low OFF current of 10^(-14)A,a high ON/OFF current ratio of up to 10^(7),and stable retention and endurance properties.Furthermore,the device with a simple symmetrical structure exhibits VDpolarity-dependent reverse rectification behavior in the high resistance state(HRS),with a rectification ratio of 10^(5).Additionally,utilizing the synergistic modulation of the conductance of the MoS_(2)channel by V_(D)and V_(G),it achieves gate-tunable reverse rectifier and ternary logic capabilities.展开更多
The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medi...The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medicine and safety inspections,has increased the exposure risk of irradiation safety workers.Traditional irradiation detectors are stiff and incompatible with the skin,and lack human health monitoring function,thus it’s vital to apply these flexible sensors for irradiation warning.Here,we report a novel composite gel device synthesized through solution processes by combining the Cs_(3)Cu_(2)I_(5):Zn nanoscintillator with the pre-patterned biocompatible gel,exhibiting a bi-functional response to motion/vibration sensing and sensitive irradiation warning.These wearable devices achieve a pressure sensitivity of up to 34 kPa^(-1)in a low-pressure range (0–3 kPa),a low limit of detection (LoD) down to 1.4 Pa,enabling health monitoring functions of pulse monitoring,finger bending,and elbow bending.Simultaneously,the device scintillates under X-ray irradiation among a wide dose rate range of 54–1167μGy_(air)s^(-1).The robust device shows no obvious signal loss after 4000 compression cycles and also excellent irradiation resistance over 50 days,broadening the path for designing and realizing new functional wearable devices.展开更多
Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and cou...Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grants No.2021B0909060002)National Natural Science Foundation of China(Grants No.62204219,62204140)Major Program of Natural Science Foundation of Zhejiang Province(Grants No.LDT23F0401).
文摘Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons.
基金support from the National Natural Science Foundation of China(Grant No.62105148)China Postdoctoral Science Foundation(2022TQ0148 and 2023M731651)Postgraduate Research&Practice Innovation Program of NUAA(xcxjh20230609).
文摘Dual-band electrochromic devices capable of the spectral-selective modulation of visible(VIS)light and near-infrared(NIR)can notably reduce the energy consumption of buildings and improve the occupants’visual and thermal comfort.However,the low optical modulation and poor durability of these devices severely limit its practical applications.Herein,we demonstrate an efficient and flexible bifunctional dual-band electrochromic device which not only shows excellent spectral-selective electrochromic performance with a high optical modulation and a long cycle life,but also displays a high capacitance and a high energy recycling efficiency of 51.4%,integrating energy-saving with energy-storage.The nanowires structure and abundant oxygen-vacancies of oxygen-deficient tungsten oxide nanowires endows it high flexibility and a high optical modulation of 73.1%and 85.3%at 633 and 1200 nm respectively.The prototype device assembled can modulate the VIS light and NIR independently and effectively through three distinct modes with a long cycle life(3.3%capacity loss after 10,000 cycles)and a high energy-saving performance(8.8℃lower than the common glass).Furthermore,simulations also demonstrate that our device outperforms the commercial low-emissivity glass in terms of energy-saving in most climatic zones around the world.Such windows represent an intriguing potential technology to improve the building energy efficiency.
基金supported by National Natural Science Foundation of China(No.12105067)the ITER Organization and China Domestic Agency for the support of this work(No.ITER5.5.P01.CN.05)。
文摘Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed.
基金Project supported by the Scientific Research Project of China Three Gorges Corporation(Grant No.202203092)。
文摘Solar Design(https://solardesign.cn/)is an online photovoltaic device simulation and design platform that provides engineering modeling analysis for crystalline silicon solar cells,as well as emerging high-efficiency solar cells such as organic,perovskite,and tandem cells.The platform offers user-updatable libraries of basic photovoltaic materials and devices,device-level multi-physics simulations involving optical–electrical–thermal interactions,and circuit-level compact model simulations based on detailed balance theory.Employing internationally advanced numerical methods,the platform accurately,rapidly,and efficiently solves optical absorption,electrical transport,and compact circuit models.It achieves multi-level photovoltaic simulation technology from“materials to devices to circuits”with fully independent intellectual property rights.Compared to commercial softwares,the platform achieves high accuracy and improves speed by more than an order of magnitude.Additionally,it can simulate unique electrical transport processes in emerging solar cells,such as quantum tunneling,exciton dissociation,and ion migration.
基金supported by National Natural Science Foundation(52204050)Sichuan Science and Technology Program(2021ZHCG0013,22ZDYF3009)。
文摘Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.
文摘Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we observed a larger increase of off-state leakage in the short channel device than in long one. However, a larger threshold voltage shift is observed for the narrow width device than for the wide one, which is well known as the radiation induced narrow channel effect. The radiation induced charge in the shallow trench isolation oxide influences the electric field of the narrow channel device. Also, the drain bias dependence of the off-state leakage after irradiation is observed, which is called the radiation enhanced drain induced barrier lowing effect. Finally, we found that substrate bias voltage can suppress the off-state leakage, while leading to more obvious hump effect.
文摘Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.
基金the National Natural Science Foundation of China(11875138,52077095).
文摘High-performance ion-conducting hydrogels(ICHs)are vital for developing flexible electronic devices.However,the robustness and ion-conducting behavior of ICHs deteriorate at extreme tempera-tures,hampering their use in soft electronics.To resolve these issues,a method involving freeze–thawing and ionizing radiation technology is reported herein for synthesizing a novel double-network(DN)ICH based on a poly(ionic liquid)/MXene/poly(vinyl alcohol)(PMP DN ICH)system.The well-designed ICH exhibits outstanding ionic conductivity(63.89 mS cm^(-1) at 25℃),excellent temperature resistance(-60–80℃),prolonged stability(30 d at ambient temperature),high oxidation resist-ance,remarkable antibacterial activity,decent mechanical performance,and adhesion.Additionally,the ICH performs effectively in a flexible wireless strain sensor,thermal sensor,all-solid-state supercapacitor,and single-electrode triboelectric nanogenerator,thereby highlighting its viability in constructing soft electronic devices.The highly integrated gel structure endows these flexible electronic devices with stable,reliable signal output performance.In particular,the all-solid-state supercapacitor containing the PMP DN ICH electrolyte exhibits a high areal specific capacitance of 253.38 mF cm^(-2)(current density,1 mA cm^(-2))and excellent environmental adaptability.This study paves the way for the design and fabrication of high-performance mul-tifunctional/flexible ICHs for wearable sensing,energy-storage,and energy-harvesting applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.52373280,52177014,51977009,52273257).
文摘With the diversified development of big data,detection and precision guidance technologies,electromagnetic(EM)functional materials and devices serving multiple spectrums have become a hot topic.Exploring the multispectral response of materials is a challenging and meaningful scientific question.In this study,MXene/TiO_(2)hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering.More importantly,MXene/TiO_(2)hybrids exhibit adjustable spectral responses in the GHz,infrared and visible spectrums,and several EM devices are constructed based on this.An antenna array provides excellent EM energy harvesting in multiple microwave bands,with|S11|up to−63.2 dB,and can be tuned by the degree of bending.An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband.An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14μm.This work can provide new inspiration for the design and development of multifunctional,multi-spectrum EM devices.
基金supported by National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(RS-2024-00335216,RS-2024-00407084 and RS-2023-00207836)Korea Environment Industry&Technology Institute(KEITI)through the R&D Project of Recycling Development for Future Waste Resources Program,funded by the Korea Ministry of Environment(MOE)(2022003500003).
文摘The demand of high-performance thin-film-shaped deformable electromagnetic interference(EMI)shielding devices is increasing for the next generation of wearable and miniaturized soft electronics.Although highly reflective conductive materials can effectively shield EMI,they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously.Herein,soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented.The devices consist of liquid metal(LM)layer and LM grid-patterned layer separated by a thin elastomeric film,fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer.The devices demonstrate high electromagnetic shielding effectiveness(SE)(SE_(T) of up to 75 dB)with low reflectance(SER of 1.5 dB at the resonant frequency)owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures.Remarkably,the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain(resonant frequency shift from 81.3 to 71.3 GHz@33%strain)and is also capable of retaining shielding effectiveness even after multiple strain cycles.This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.
文摘Objective To evaluate the effect of point-of-care hemoglobin/hematocrit(POC HGB/HCT) devices and intraoperative blood salvage on the amount of perioperative allogeneic blood transfusion and blood conservation in clinical practice. Methods A total of 46 378 medical records of 22 selected hospitals were reviewed. The volume of allogeneic red blood cell and plasma, number of patients transfused, number of intraoperative autologous blood salvage, total volume of autologous blood transfusion, and amount of surgery in the year of 2011 and 2013 were tracked. Paired t-test was used in intra-group comparison, while t-test of two isolated samples carried out in inter-group comparison. P<0.05 was defined as statistically significant difference. Results In the hospitals where POC HGB/HCT device was used(n=9), the average allogeneic blood transfusion volume per 100 surgical cases in 2013 was significantly lower than that in 2011(39.86±20.20 vs. 30.49±17.50 Units, t=3.522, P=0.008). In the hospitals without POC HGB/HCT meter, the index was not significantly different between 2013 and 2011. The average allogeneic blood transfusion volume was significantly reduced in 2013 than in 2011 in the hospitals where intraoperative autologous blood salvage ratio [autologous transfusion volume/(autologous transfusion volume+allogeneic transfusion volume)] was increased(n=12, t=2.290, P=0.042). No significant difference of the above index was found in the hospitals whose autologous transfusion ratio did not grow. Conclusion Intraoperative usage of POC HGB/HCT devices and increasing autologous transfusion ratio could reduce perioperative allogeneic blood transfusion.
基金This study was supported by the National Natural Science Foundation of China(No.52074102)Foundation for Distinguished Young Talents in Higher Education of Henan(No.212300410006)+1 种基金Foundation for the Science and Technology Innovation Talents Project of Universities in Henan(No.22HASTIT010)Special Funds for Fundamental Scientific Research Expenses of Universities in Henan(No.NSFRF210202).
文摘The anchoring eccentricity of the bolt and cable bolt is a common problem in geotechnical support engineering and affects the ability of the bolt and cable bolt to control the rock mass to a certain extent.This paper reports on numerical simulation and laboratory experiments conducted to clarify the effect of eccentricity on the anchoring quality of the bolt and cable bolt,and to establish an effective solution strategy.The results reveal that the anchoring eccentricity causes unbalanced stress distribution and the uncoordinated deformation of the resin layer,which results in higher stress and greater deformation of the resin layer at the near side of the rod body.Additionally,as the degree of anchoring eccentricity increases,the effect becomes more significant,and the resin layer of the anchoring system becomes more likely to undergo preferential failure locally,which weakens the load-bearing performance of the anchoring system.This paper develops an innovative bolt anchoring rectifying device(B-ARD)and cable bolt anchoring rectifying device(C-ARD)on the basis of the structural characteristics of the bolt and cable bolt to better ensure the anchoring effect of them.The working effects of these two devices were verified in detailed experiments and analysis.The experimental results show that the anchoring rectifying devices(ARD)improve and ensure the anchoring concentricity of the bolt and cable bolt,which will help improve the supporting performance of them.The paper provides a convenient and effective method for improving the anchoring concentricity of the bolt and cable bolt,and provides a concept and reference for technical research on improving the effect of roof bolting.
基金supported by National Natural Science Foundation of China(No.60908018)National High Technology Research and Development Program of China(No.2013AA065502)Anhui Province Outstanding Youth Science Fund of China(No.1108085J19)
文摘Abstract Heavy metals in water can be deposited on graphite flakes, which can be used as an enrichment method for laser-induced breakdown spectroscopy (LIBS) and is studied in this paper. The graphite samples were prepared with an automatic device, which was composed of a loading and unloading module, a quantitatively adding solution module, a rapid heating and drying module and a precise rotating module. The experimental results showed that the sample preparation methods had no significant effect on sample distribution and the LIBS signal accumulated in 20 pulses was stable and repeatable. With an increasing amount of the sample solution on the graphite flake, the peak intensity at Cu I 324.75 nm accorded with the exponential function with a correlation coefficient of 0.9963 and the background intensity remained unchanged. The limit of detection (LOD) was calculated through linear fitting of the peak intensity versus the concentration. The LOD decreased rapidly with an increasing amount of sample solution until the amount exceeded 20 mL and the correlation coefficient of exponential function fitting was 0.991. The LOD of Pb, Ni, Cd, Cr and Zn after evaporating different amounts of sample solution on the graphite flakes was measured and the variation tendency of their LOD with sample solution amounts was similar to the tendency for Cu. The experimental data and conclusions could provide a reference for automatic sample preparation and heavy metal in situ detection.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFE0303105)the Fundamental Research Funds for the Central Universities(Grant No.2022FRFK060021)the National MCF Energy Research and Development Program(Grant No.2019YFE03080300).
文摘The HIT-PSI is a linear plasma device built for physically simulating the high heat flux environment of future reactor divertors to test/develop advanced target plate materials.In this study,the geometry-modified SOLPS-ITER program is employed to examine the effects of the magnetic field strength and neutral pressure in the device on the heat flux experienced by the target plate of the HIT-PSI device.The findings of the numerical simulation indicate a positive correlation between the magnetic field strength and the heat flux density.Conversely,there is a negative correlation observed between the heat flux density and the neutral pressure.When the magnetic field strength at the axis exceeds 1 tesla and the neutral pressure falls below 10 Pa,the HIT-PSI has the capability to attain a heat flux of 10 MW·m-2 at the target plate.The simulation results offer a valuable point of reference for subsequent experiments at HIT-PSI.
基金supported by the Fundamental Research Funds for the Central University(No.JZ2023HGTA0182)Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)。
文摘Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions are irradiated on a thyristor device for a long time,the electrical characteristics of the device change,which may eventually cause irreversible damage.In this study,with the thyristor switch of the commutation circuit in the quench protection system(QPS)of a fusion device as the study object,the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established.Subsequently,a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis.In addition,the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation,providing valuable guidelines for the maintenance and renovation of the QPS.
基金Project supported by the Special Funding for Talents of Three Gorges University(Grant No.8230202)the National Natural Science Foundation of China(Grant No.12274258)National Key R&D Program of China(Grant No.2016YFA0401003).
文摘Non-magnetic semiconductor materials and their devices have attracted wide attention since they are usually prone to exhibit large positive magnetoresistance(MR)effect in a low static magnetic field environment at room temperature.However,how to obtain a large room-temperature negative MR effect in them remains to be studied.In this paper,by designing an Au/n-Ge:Sb/Au device with metal electrodes located on identical side,we observe an obvious room-temperature negative MR effect in a specific 50 T pulsed high magnetic field direction environment,but not in a static low magnetic field environment.Through the analysis of the experimental measurement of the Hall effect results and bipolar transport theory,we propose that this unconventional negative MR effect is mainly related to the charge accumulation on the surface of the device under the modulation of the stronger Lorentz force provided by the pulsed high magnetic field.This theoretical analytical model is further confirmed by regulating the geometry size of the device.Our work sheds light on the development of novel magnetic sensing,magnetic logic and other devices based on non-magnetic semiconductors operating in pulsed high magnetic field environment.
基金supported by a grant of the Ministry of Research,Innovation and Digitization,CNCS–UEFISCDI,project number PNIII-P1-1.1-TE-2021-1110PNCDI III,contract number TE 83/2022,and project number PN-III-P2-2.1-PED-2019-3520PNCDI III,contract number 438PED/2020。
文摘The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazomethine,and polyamide)were synthesized to ascertain the superior performer.The polyamide exhibited remarkable attributes,including high redox stability during 500 repetitive CVs,optical contrast of 61.98%,rapid response times of 1.02 and 1.38 s for coloring and bleaching,EC efficiency of 280 cm^(2)C^(-1).and decays of the optical density and EC efficiency of only 12.18%and 6.23%after 1000 cycles.Then,the energy storage performance of polyamide PA was tested,for which the following parameters were obtained:74.7 F g^(-1)(CV,scan rate of 10 mV s^(-1))and 118 F g^(-1)(GCD,charging current of 0.1 A g^(-1)).Then,the polyamide was tested in EES devices,which yielded the following EC parameters:an optical contrast of 62.15%,response times of 9.24 and 5.01 s for coloring and bleaching,EC efficiency of 178 cm^(2)C^(-1),and moderate decays of 20.25%and 23.24%for the optical density and EC efficiency after 500 cycles.The energy storage performance included a capacitance of 106 F g^(-1)(CV,scan rate of 0.1 mV s^(-1))and 9.23 F g^(-1)(GCD,charging current of 0.1 A g^(-1)),capacitance decay of 11.9%after500 cycles,and 1.7 V retention after 2 h.Also,two EES devices connected in series powered a 3 V LED for almost 30 s.
基金supported by the National Key Research&Development Project of China(Grant No.2022YFA1204100)the National Natural Science Foundation of China(Grant No.62488201)+1 种基金CAS Project for Young Scientists in Basic Research(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘Charge trapping devices incorporating 2D materials and high-κdielectrics have emerged as promising candidates for compact,multifunctional memory devices compatible with silicon-based manufacturing processes.However,traditional charge trapping devices encounter bottlenecks including complex device structure and low operation speed.Here,we demonstrate an ultrafast reconfigurable direct charge trapping device utilizing only a 30 nm-thick Al_(2)O_(3)trapping layer with a MoS_(2)channel,where charge traps reside within the Al_(2)O_(3)bulk confirmed by transfer curves with different gatevoltage sweeping rates and photoluminescence(PL)spectra.The direct charging tapping device shows exceptional memory performance in both three-terminal and two-terminal operation modes characterized by ultrafast three-terminal operation speed(~300 ns),an extremely low OFF current of 10^(-14)A,a high ON/OFF current ratio of up to 10^(7),and stable retention and endurance properties.Furthermore,the device with a simple symmetrical structure exhibits VDpolarity-dependent reverse rectification behavior in the high resistance state(HRS),with a rectification ratio of 10^(5).Additionally,utilizing the synergistic modulation of the conductance of the MoS_(2)channel by V_(D)and V_(G),it achieves gate-tunable reverse rectifier and ternary logic capabilities.
基金financially supported by the National Natural Science Foundation of China (No. 52173166 and 22105083)the Project of Science and Technology Development Plan of Jilin Province (No. 20230101025JC)+1 种基金Xiaomi Young Scholar Projectthe Fundamental Research Funds for the Central Universities, JLU, and JLUSTIRT (2017TD-06)。
文摘The well-developed multifunctional wearable electronic device has fed the demand for human medicine and health monitoring in complex situations.However,the advancement of nuclear technology,especially irradiation medicine and safety inspections,has increased the exposure risk of irradiation safety workers.Traditional irradiation detectors are stiff and incompatible with the skin,and lack human health monitoring function,thus it’s vital to apply these flexible sensors for irradiation warning.Here,we report a novel composite gel device synthesized through solution processes by combining the Cs_(3)Cu_(2)I_(5):Zn nanoscintillator with the pre-patterned biocompatible gel,exhibiting a bi-functional response to motion/vibration sensing and sensitive irradiation warning.These wearable devices achieve a pressure sensitivity of up to 34 kPa^(-1)in a low-pressure range (0–3 kPa),a low limit of detection (LoD) down to 1.4 Pa,enabling health monitoring functions of pulse monitoring,finger bending,and elbow bending.Simultaneously,the device scintillates under X-ray irradiation among a wide dose rate range of 54–1167μGy_(air)s^(-1).The robust device shows no obvious signal loss after 4000 compression cycles and also excellent irradiation resistance over 50 days,broadening the path for designing and realizing new functional wearable devices.
基金supported by the National Key Research and Development Program (2022YFF0609504)the National Natural Science Foundation of China (61974126,51902273,62005230,62001405)the Natural Science Foundation of Fujian Province of China (No.2021J06009)
文摘Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications.