A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the ...A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the two-dimensional direction-of-arrival(2D-DOA)and polarization angles,aiming to address the issues of incomplete,asynchronous,and inaccurate third-party reference used for attitude estimation in spacecraft docking missions by employing the electromagnetic wave’s three-dimensional(3D)wave structure as a complete third-party reference.Comparative analysis with state-ofthe-art algorithms shows significant improvements in estimation accuracy and computational efficiency with this algorithm.Numerical simulations have verified the effectiveness and superiority of this method.A high-precision,reliable,and cost-effective method for rapid spacecraft attitude estimation is provided in this paper.展开更多
To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary stat...To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method.展开更多
In order to alleviate reconstruction errors and improve the precision in attitude algorithm of all-accelerometer based Inertial Navigation System(also called Gyroscope-Free Inertial Navigation System,GFINS),a new sche...In order to alleviate reconstruction errors and improve the precision in attitude algorithm of all-accelerometer based Inertial Navigation System(also called Gyroscope-Free Inertial Navigation System,GFINS),a new scheme of 13 accelerometer based GFINS is presented.And a novel attitude algorithm for attitude matrix computing is proposed.It combines angular rates with angular accelerations,which are obtained from the specially designed 13-accelerometer based GFINS.Hermite interpolation method is used to reconstruct the discrete angular rates.With the reconstructed angular rates,attitude matrix can be determined.Basic steps of new algorithm are analyzed,and simulation experiments based on typical coning motion are made.The results show that the precision of new algorithm is improved by more than 40%.Different from usual attitude algorithms which use only angular rates,the new attitude algorithm use more information and can achieve better precision.展开更多
In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system ...In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system is of large volume, high cost, and complex structure, this approach is presented to determine the attitude based on vector space with single-antenna GPS and accelerometers in the micro inertial measurement unit (MIMU). It can provide real-time and accurate attitude information. Subsequently, the single-antenna GPS/SINS integrated navigation system is designed based on the combination of position, velocity, and attitude. Finally the semi- physical simulations of single-antenna GPS attitude determination system and single-antenna GPS/SINS integrated navigation system are carried out. The simulation results, based on measured data, show that the single-antenna GPS/SINS system can provide more accurate navigation information compared to the GPS/SINS system, based on the combination of position and velocity. Furthermore, the single-antenna GPS/SINS system is characteristic of lower cost and simpler structure. It provides the basis for the application of a single-antenna GPS/SINS integrated navigation system in a micro aerial vehicle (MAV).展开更多
This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm ar...This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm arising from the disturbance from orbit control force. The effects of orbit control force on the fault diagnosis system for satellite attitude control systems, including the disturbing torque caused by the misalignments and the model uncertainty caused by the fuel consumed, are discussed, where standard Lu- enberger observer cannot work well. Then the nonlinear unknown input observer is proposed to decouple faults from disturbance, Besides, a linear matrix inequality approach is adopted to reduce the effect of nonlinear part and model uncertainties on the observer. The numerical and semi-physical simulation demonstrates the effectiveness of the proposed observer for the fault diagnosis system of the satellite during orbit maneuver.展开更多
This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theor...This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.展开更多
The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m...The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.展开更多
This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertaint...This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers.展开更多
When a pico satellite is under normal operational condi- tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliab...When a pico satellite is under normal operational condi- tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc- tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de- fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel- lite, and the results are compared.展开更多
A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and ...A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and accurate tracking of the aerodynamic angle commands with the finite time convergence. The proposed control strategy is developed on the basis of integral sliding mode philosophy, which combines conventional sliding mode control and a linear quadratic regulator over a finite time interval with a free-final-state and allows the finite-time establishment of a high-order sliding mode. Firstly, a second-order sliding mode attitude controller is designed in the proposed high-order siding mode control framework. Then, to address the control chattering problem, a virtual control is introduced in the control design and hence a third-order sliding mode attitude controller is developed, leading to the chattering reduction as well as the control accuracy improvement. Finally, simulation examples are given to illustrate the effectiveness of the theoretical results.展开更多
UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF ( extended ...UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF ( extended Kalman filtering) . As a result, the linearization error is avoided, and the filtering accuracy is greatly improved. UKF is applied to the attitude determination for gyroless satellite. Simulations are made to compare the new filter with the traditional EKF. The results indicate that under same conditions, compared with EKF, UKF has faster convergence speed, higher filtering accuracy and more stable estimation performance.展开更多
A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with takin...A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with taking the attitude deflection during the shear plugging sub-stage into account,and the shape of the plug formed on the rear surface of target is also re-investigated.Moreover,a new classification of concrete targets is proposed based on the target thickness,with which the attitude deflections in different kinds of concrete targets are analyzed.It is found that the numerical results by using the new perforation model are in good agreement with the previous experimental data and simulated results.Furthermore,the variations of the attitude deflection with the initial conditions(the initial attitude angle and the initial impact velocity) are investigated.展开更多
To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated....To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.展开更多
This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagn...This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate.展开更多
The consensus problem of the distributed attitude synchronization in the spacecraft formation flying is considered.Firstly,the attitude dynamics of a rigid body spacecraft is described by modified Rodriguez parameters...The consensus problem of the distributed attitude synchronization in the spacecraft formation flying is considered.Firstly,the attitude dynamics of a rigid body spacecraft is described by modified Rodriguez parameters(MRPs).Then global stable distributed cooperative attitude control laws are proposed for different cases.In the first case,the control law guarantees the state consensus during the attitude synchronization.In the second case,the control law ensures both the attitudes synchronizing to a desired constant attitude and the angular velocities converging at zero.In the third case,an attitude consensus control law with bounded control input is proposed.Finally,the effectiveness and validity of the control laws are demonstrated by simulations of six rigid bodies formation flying.展开更多
To solve the problem of attitude synchronization control for spacecraft formation flying(SFF)suffering from external disturbances under a directed communication topology,a sliding mode disturbance observer(SMDO)based ...To solve the problem of attitude synchronization control for spacecraft formation flying(SFF)suffering from external disturbances under a directed communication topology,a sliding mode disturbance observer(SMDO)based on the finite-time control strategy is developed to observe the time-varying external disturbance via estimating the upper bound of its first derivative.Meanwhile,the rotation matrix is employed to describe the attitude of SFF for the purpose of the avoidance of singularity and unwinding phenomenon.As for the attitude synchronization and the tracking control architecture,a sliding mode surface(SMS)is given such that the control objective can be achieved.The effectiveness and the validity of the proposed method are elaborated via theoretical analysis and numerical simulations.展开更多
The output feedback control for spacecraft attitude tracking system is investigated in this study. It is assumed that angular velocity measurements are not available for feedback control.A technique named adding power...The output feedback control for spacecraft attitude tracking system is investigated in this study. It is assumed that angular velocity measurements are not available for feedback control.A technique named adding power integrator(API) is adopted to estimate the pseudo-angular-velocity. Then we design a finite-time attitude control law, which only utilizes the relative attitude information. The stability analyses of the feedback system are proved as well, which shows the attitude tracking errors will converge into a region of zero even the external disturbances exist. The simulation results illustrate the high precision and robust attitude control performance of the proposed control strategy.展开更多
A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil...A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil catamaran is presented by use of linear matrix inequality (LMI) techniques. Secondly, a nonlinear mathematical model of hydrofoil catamaran is established, acting as the platform for further researches. The specialty in interpolation of T-S fuzzy model guarantees that feedback gain can be obtained smoothly, while boat's speed is shifting over the operating envelope. The external disturbances are also attenuated to achieve H ∞ control performance, meanwhile. Finally, based on such a boat, HC200B-A1, simulation researches demonstrate the design procedures and the effectiveness of fuzzy robust attitude controller.展开更多
Promoting occupational safety and health in Hong Kong,Special Administrative Region of China is an important and ongoing mission. As the major organization with statutory responsibilities,the Occupational Safety and H...Promoting occupational safety and health in Hong Kong,Special Administrative Region of China is an important and ongoing mission. As the major organization with statutory responsibilities,the Occupational Safety and Health Council understand the importance to strengthen and cultivate our safety culture. It is widely believed that numbers of occupational related diseases and injuries could be prevented with the improvement of the awareness and attitudes of the employees and the public. Therefore,a comprehensive and in-depth study to monitor the occupational health and safety level and status of the community and working population is needed. Objectives: Our Council has developed the Occupational Safety Culture Index ( OSCI) to measure the current level of community and workplace safety and health awareness,knowledge and attitude. Benchmarking measures of the key safety performance indicators are to be derived thereof. Methods: A territory-wide random telephone survey was conducted to assess the community and employees'awareness,attitude and knowledge in 2008. A structured questionnaire was designed with the content validity and reliability assessed before the survey administration. A series of quality control approaches were also applied to assure the quality of the fieldwork and the reliability of the data. Results: 1,531 eligible participants'data were collected and computed into 2 types of composite indices,Occupational Safety Culture Index ( Community) ( OSCIC) and Occupational Safety Culture Index (Workplace) (OSCIW) . With the maximum score of index at 100,the overall score of OSCIC is 66. 9 and the OSCIW is 61. 3 in Hong Kong. Achievements: OSCI served as an effective management tool to measure the safety culture in Hong Kong. With a representative sample and high quality study control and validated assessment approaches,the OSCI and the sub-indices are reliable indicators to assess the effectiveness of safety culture enhancement strategy and the OSH intervention measures.展开更多
A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is...A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is designed hence system could both have strong robustness and finite time convergence rate,and the advantage of finite time control and PD control is combined in this paper.System convergence rate is discussed by Lyapunov method,and the constraint on control parameters is given by implementing the coupled term of angular velocity and attitude quaternion.Moreover,the accuracy at steady stage depending on control parameters is given hence system could converge to this field within finite time.System stability and performance is demonstrated by numerical simulation results.展开更多
文摘A spacecraft attitude estimation method based on electromagnetic vector sensors(EMVS)array is proposed,which employs the orthogonally constrained parallel factor(PARAFAC)algorithm and makes use of measurements of the two-dimensional direction-of-arrival(2D-DOA)and polarization angles,aiming to address the issues of incomplete,asynchronous,and inaccurate third-party reference used for attitude estimation in spacecraft docking missions by employing the electromagnetic wave’s three-dimensional(3D)wave structure as a complete third-party reference.Comparative analysis with state-ofthe-art algorithms shows significant improvements in estimation accuracy and computational efficiency with this algorithm.Numerical simulations have verified the effectiveness and superiority of this method.A high-precision,reliable,and cost-effective method for rapid spacecraft attitude estimation is provided in this paper.
基金supported by the National Natural Science Foundation of China (60874054)
文摘To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method.
文摘In order to alleviate reconstruction errors and improve the precision in attitude algorithm of all-accelerometer based Inertial Navigation System(also called Gyroscope-Free Inertial Navigation System,GFINS),a new scheme of 13 accelerometer based GFINS is presented.And a novel attitude algorithm for attitude matrix computing is proposed.It combines angular rates with angular accelerations,which are obtained from the specially designed 13-accelerometer based GFINS.Hermite interpolation method is used to reconstruct the discrete angular rates.With the reconstructed angular rates,attitude matrix can be determined.Basic steps of new algorithm are analyzed,and simulation experiments based on typical coning motion are made.The results show that the precision of new algorithm is improved by more than 40%.Different from usual attitude algorithms which use only angular rates,the new attitude algorithm use more information and can achieve better precision.
基金the Astronautic Technology Foundation (HTZC0405)
文摘In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system is of large volume, high cost, and complex structure, this approach is presented to determine the attitude based on vector space with single-antenna GPS and accelerometers in the micro inertial measurement unit (MIMU). It can provide real-time and accurate attitude information. Subsequently, the single-antenna GPS/SINS integrated navigation system is designed based on the combination of position, velocity, and attitude. Finally the semi- physical simulations of single-antenna GPS attitude determination system and single-antenna GPS/SINS integrated navigation system are carried out. The simulation results, based on measured data, show that the single-antenna GPS/SINS system can provide more accurate navigation information compared to the GPS/SINS system, based on the combination of position and velocity. Furthermore, the single-antenna GPS/SINS system is characteristic of lower cost and simpler structure. It provides the basis for the application of a single-antenna GPS/SINS integrated navigation system in a micro aerial vehicle (MAV).
基金supported by the National Natural Science Foundation of China (61034005)the Natural Science Foundation of Jiangsu Province (BK2010072)
文摘This paper presents a scheme of fault diagnosis for flexible satellites during orbit maneuver. The main contribution of the paper is related to the design of the nonlinear input observer which can avoid false alarm arising from the disturbance from orbit control force. The effects of orbit control force on the fault diagnosis system for satellite attitude control systems, including the disturbing torque caused by the misalignments and the model uncertainty caused by the fuel consumed, are discussed, where standard Lu- enberger observer cannot work well. Then the nonlinear unknown input observer is proposed to decouple faults from disturbance, Besides, a linear matrix inequality approach is adopted to reduce the effect of nonlinear part and model uncertainties on the observer. The numerical and semi-physical simulation demonstrates the effectiveness of the proposed observer for the fault diagnosis system of the satellite during orbit maneuver.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272358 and 62103052)。
文摘This paper investigates the design of an attitude autopilot for a dual-channel controlled spinning glideguided projectile(SGGP),addressing model uncertainties and external disturbances.Based on fixed-time stable theory,a disturbance observer with integral sliding mode and adaptive techniques is proposed to mitigate total disturbance effects,irrespective of initial conditions.By introducing an error integral signal,the dynamics of the SGGP are transformed into two separate second-order fully actuated systems.Subsequently,employing the high-order fully actuated approach and a parametric approach,the nonlinear dynamics of the SGGP are recast into a constant linear closed-loop system,ensuring that the projectile's attitude asymptotically tracks the given goal with the desired eigenstructure.Under the proposed composite control framework,the ultimately uniformly bounded stability of the closed-loop system is rigorously demonstrated via the Lyapunov method.Validation of the effectiveness of the proposed attitude autopilot design is provided through extensive numerical simulations.
基金Supported by the National Natural Science Foundation of China(42221002,42171432)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities.
文摘The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.
文摘This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid- ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con- trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se- cond control law is also designed by combining the second or- der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya- punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed controllers.
文摘When a pico satellite is under normal operational condi- tions, whether it is extended or unscented, a conventional Kalman filter gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunc- tions in the estimation system, the Kalman filter gives inaccurate results and diverges by time. This study compares two different robust Kalman filtering algorithms, robust extended Kalman filter (REKF) and robust unscented Kalman filter (RUKF), for the case of measurement malfunctions. In both filters, by the use of de- fined variables named as the measurement noise scale factor, the faulty measurements are taken into the consideration with a small weight, and the estimations are corrected without affecting the characteristic of the accurate ones. The proposed robust Kalman filters are applied for the attitude estimation process of a pico satel- lite, and the results are compared.
基金supported by Major State Basic Research Development Program(2012CB720000)National Natural Science Foundation of China(11372034)Innovative Research Team of Beijing Institute of Technology
文摘A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and accurate tracking of the aerodynamic angle commands with the finite time convergence. The proposed control strategy is developed on the basis of integral sliding mode philosophy, which combines conventional sliding mode control and a linear quadratic regulator over a finite time interval with a free-final-state and allows the finite-time establishment of a high-order sliding mode. Firstly, a second-order sliding mode attitude controller is designed in the proposed high-order siding mode control framework. Then, to address the control chattering problem, a virtual control is introduced in the control design and hence a third-order sliding mode attitude controller is developed, leading to the chattering reduction as well as the control accuracy improvement. Finally, simulation examples are given to illustrate the effectiveness of the theoretical results.
基金This project was supported by the Innoviation Foundation of the Space Science and Technology Group.
文摘UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF ( extended Kalman filtering) . As a result, the linearization error is avoided, and the filtering accuracy is greatly improved. UKF is applied to the attitude determination for gyroless satellite. Simulations are made to compare the new filter with the traditional EKF. The results indicate that under same conditions, compared with EKF, UKF has faster convergence speed, higher filtering accuracy and more stable estimation performance.
基金This work was supported by the National Natural Science Foundation of China[grant numbers 11521062].
文摘A perforation model is developed to predict the attitude deflection in the oblique perforation of concrete targets by a rigid projectile,in which the inertial moment of the projectile is introduced,together with taking the attitude deflection during the shear plugging sub-stage into account,and the shape of the plug formed on the rear surface of target is also re-investigated.Moreover,a new classification of concrete targets is proposed based on the target thickness,with which the attitude deflections in different kinds of concrete targets are analyzed.It is found that the numerical results by using the new perforation model are in good agreement with the previous experimental data and simulated results.Furthermore,the variations of the attitude deflection with the initial conditions(the initial attitude angle and the initial impact velocity) are investigated.
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.
基金supported by the National Natural Science Foundation of China(1140503561004130+4 种基金60834005)the Natural Science Foundation of Heilongjiang Province of China(F201414)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBHQ15034)the Stable Supporting Fund of Acoustic Science and Technology Laboratory(JCKYS2019604SSJS002)the Fundamental Research Funds for the Central Universities。
文摘This paper presents a kind of attitude estimation algorithm based on quaternion-vector switching and square-root cubature Kalman filter for autonomous underwater vehicle(AUV).The filter formulation is based on geomagnetic field tensor measurement dependent on the attitude and a gyro-based model for attitude propagation. In this algorithm, switching between the quaternion and the three-component vector is done by a couple of the mathematical transformations. Quaternion is chosen as the state variable of attitude in the kinematics equation to time update, while the mean value and covariance of the quaternion are computed by the three-component vector to avoid the normalization constraint of quaternion. The square-root forms enjoy a continuous and improved numerical stability because all the resulting covariance matrices are guaranteed to stay positively semidefinite. The entire square-root cubature attitude estimation algorithm with quaternion-vector switching for the nonlinear equality constraint of quaternion is given. The numerical simulation of simultaneous swing motions in the three directions is performed to compare with the three kinds of filters and the results indicate that the proposed filter provides lower attitude estimation errors than the other two kinds of filters and a good convergence rate.
基金supported by the National Science Foundation of China (6097406260972119)the Chinese Ministry of Science and Intergovernmental Cooperation Project(2009DFA12870)
文摘The consensus problem of the distributed attitude synchronization in the spacecraft formation flying is considered.Firstly,the attitude dynamics of a rigid body spacecraft is described by modified Rodriguez parameters(MRPs).Then global stable distributed cooperative attitude control laws are proposed for different cases.In the first case,the control law guarantees the state consensus during the attitude synchronization.In the second case,the control law ensures both the attitudes synchronizing to a desired constant attitude and the angular velocities converging at zero.In the third case,an attitude consensus control law with bounded control input is proposed.Finally,the effectiveness and validity of the control laws are demonstrated by simulations of six rigid bodies formation flying.
基金This work was supported by the National Natural Science Foundation of China(11772185)the Natural Science Foundation of Heilongjiang Province(F2017005)the Fundamental Research Funds for the Central Universities(HEUCFP201770).
文摘To solve the problem of attitude synchronization control for spacecraft formation flying(SFF)suffering from external disturbances under a directed communication topology,a sliding mode disturbance observer(SMDO)based on the finite-time control strategy is developed to observe the time-varying external disturbance via estimating the upper bound of its first derivative.Meanwhile,the rotation matrix is employed to describe the attitude of SFF for the purpose of the avoidance of singularity and unwinding phenomenon.As for the attitude synchronization and the tracking control architecture,a sliding mode surface(SMS)is given such that the control objective can be achieved.The effectiveness and the validity of the proposed method are elaborated via theoretical analysis and numerical simulations.
基金supported by the National Natural Science Foundation of China(616731356140310361603114)
文摘The output feedback control for spacecraft attitude tracking system is investigated in this study. It is assumed that angular velocity measurements are not available for feedback control.A technique named adding power integrator(API) is adopted to estimate the pseudo-angular-velocity. Then we design a finite-time attitude control law, which only utilizes the relative attitude information. The stability analyses of the feedback system are proved as well, which shows the attitude tracking errors will converge into a region of zero even the external disturbances exist. The simulation results illustrate the high precision and robust attitude control performance of the proposed control strategy.
文摘A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil catamaran is presented by use of linear matrix inequality (LMI) techniques. Secondly, a nonlinear mathematical model of hydrofoil catamaran is established, acting as the platform for further researches. The specialty in interpolation of T-S fuzzy model guarantees that feedback gain can be obtained smoothly, while boat's speed is shifting over the operating envelope. The external disturbances are also attenuated to achieve H ∞ control performance, meanwhile. Finally, based on such a boat, HC200B-A1, simulation researches demonstrate the design procedures and the effectiveness of fuzzy robust attitude controller.
文摘Promoting occupational safety and health in Hong Kong,Special Administrative Region of China is an important and ongoing mission. As the major organization with statutory responsibilities,the Occupational Safety and Health Council understand the importance to strengthen and cultivate our safety culture. It is widely believed that numbers of occupational related diseases and injuries could be prevented with the improvement of the awareness and attitudes of the employees and the public. Therefore,a comprehensive and in-depth study to monitor the occupational health and safety level and status of the community and working population is needed. Objectives: Our Council has developed the Occupational Safety Culture Index ( OSCI) to measure the current level of community and workplace safety and health awareness,knowledge and attitude. Benchmarking measures of the key safety performance indicators are to be derived thereof. Methods: A territory-wide random telephone survey was conducted to assess the community and employees'awareness,attitude and knowledge in 2008. A structured questionnaire was designed with the content validity and reliability assessed before the survey administration. A series of quality control approaches were also applied to assure the quality of the fieldwork and the reliability of the data. Results: 1,531 eligible participants'data were collected and computed into 2 types of composite indices,Occupational Safety Culture Index ( Community) ( OSCIC) and Occupational Safety Culture Index (Workplace) (OSCIW) . With the maximum score of index at 100,the overall score of OSCIC is 66. 9 and the OSCIW is 61. 3 in Hong Kong. Achievements: OSCI served as an effective management tool to measure the safety culture in Hong Kong. With a representative sample and high quality study control and validated assessment approaches,the OSCI and the sub-indices are reliable indicators to assess the effectiveness of safety culture enhancement strategy and the OSH intervention measures.
基金supported partially by National Natural Science Foundation of China(Project Nos.61903289 and 62073102)。
文摘A finite time controller with PD-like structure for satellite attitude control is proposed in this paper.The controller is constructed with simple structure based on standard PD controller.The fractional order term is designed hence system could both have strong robustness and finite time convergence rate,and the advantage of finite time control and PD control is combined in this paper.System convergence rate is discussed by Lyapunov method,and the constraint on control parameters is given by implementing the coupled term of angular velocity and attitude quaternion.Moreover,the accuracy at steady stage depending on control parameters is given hence system could converge to this field within finite time.System stability and performance is demonstrated by numerical simulation results.