图垂直联邦学习是一种结合图数据和垂直联邦学习的分布式机器学习方法,广泛应用于金融服务、医疗健康和社交网络等领域。该方法在保护隐私的同时,利用数据多样性显著提升模型性能。然而,研究表明图垂直联邦学习容易受到对抗攻击的威胁...图垂直联邦学习是一种结合图数据和垂直联邦学习的分布式机器学习方法,广泛应用于金融服务、医疗健康和社交网络等领域。该方法在保护隐私的同时,利用数据多样性显著提升模型性能。然而,研究表明图垂直联邦学习容易受到对抗攻击的威胁。现有的针对图神经网络的对抗攻击方法,如梯度最大化攻击、简化梯度攻击等方法在图垂直联邦框架中实施时仍然面临攻击成功率低、隐蔽性差、在防御情况下无法实施等问题。为应对这些挑战,提出了一种面向图垂直联邦的对抗攻击方法(Node and Feature Adversarial Attack,NFAttack),该方法分别设计了节点攻击策略与特征攻击策略,从不同维度实施高效攻击。首先,节点攻击策略基于度中心性指标评估节点的重要性,通过连接一定数量的虚假节点以形成虚假边,从而干扰高中心性节点。其次,特征攻击策略在节点特征中注入由随机噪声与梯度噪声构成的混合噪声,进而扰乱分类结果。最后,在6个数据集和3种图神经网络模型上进行实验,结果表明NFAttack的平均攻击成功率达到80%,比其他算法提高了约30%。此外,即使在多种联邦学习防御机制下,NFAttack仍展现出较强的攻击效果。展开更多
文摘图垂直联邦学习是一种结合图数据和垂直联邦学习的分布式机器学习方法,广泛应用于金融服务、医疗健康和社交网络等领域。该方法在保护隐私的同时,利用数据多样性显著提升模型性能。然而,研究表明图垂直联邦学习容易受到对抗攻击的威胁。现有的针对图神经网络的对抗攻击方法,如梯度最大化攻击、简化梯度攻击等方法在图垂直联邦框架中实施时仍然面临攻击成功率低、隐蔽性差、在防御情况下无法实施等问题。为应对这些挑战,提出了一种面向图垂直联邦的对抗攻击方法(Node and Feature Adversarial Attack,NFAttack),该方法分别设计了节点攻击策略与特征攻击策略,从不同维度实施高效攻击。首先,节点攻击策略基于度中心性指标评估节点的重要性,通过连接一定数量的虚假节点以形成虚假边,从而干扰高中心性节点。其次,特征攻击策略在节点特征中注入由随机噪声与梯度噪声构成的混合噪声,进而扰乱分类结果。最后,在6个数据集和3种图神经网络模型上进行实验,结果表明NFAttack的平均攻击成功率达到80%,比其他算法提高了约30%。此外,即使在多种联邦学习防御机制下,NFAttack仍展现出较强的攻击效果。