In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on...In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on the geometrical properties of the Banach space in which the martingales take values.展开更多
In this article, we establish some atomic decomposition theorems for martin- gale Hardy-Lorentz spaces. As applications, with the help of weak atomic decompositions, some interpolation theorems for martingale Hardy-Lo...In this article, we establish some atomic decomposition theorems for martin- gale Hardy-Lorentz spaces. As applications, with the help of weak atomic decompositions, some interpolation theorems for martingale Hardy-Lorentz spaces are proved.展开更多
In this article,atomic decompositions and the duals of some B-valued r.v.se- quence spaces are investigated.The results show that it closely depends on the geometrical properties of the sequence that take values in.
Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting...Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.展开更多
For convolution-type Calderon-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is known that H5rmander condition can ensure the boundedness on Trieb...For convolution-type Calderon-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is known that H5rmander condition can ensure the boundedness on Triebel-Lizorkin spaces Fp^0,q (1 〈 p,q 〈 ∞) and on a party of endpoint spaces FO,q (1 ≤ q ≤ 2), hut this idea is invalid for endpoint Triebel-Lizorkin spaces F1^0,q (2 〈 q ≤ ∞). In this article, the authors apply wavelets and interpolation theory to establish the boundedness on F1^0,q (2 〈 q ≤ ∞) under an integrable condition which approaches HSrmander condition infinitely.展开更多
Let be a bounded smooth domain. In this paper, the authors define the Besov spaces Bpap on , establish the atomic decomposition of these spaces, and obtain the regularity estimate of the Dirichlet problem and the Neum...Let be a bounded smooth domain. In this paper, the authors define the Besov spaces Bpap on , establish the atomic decomposition of these spaces, and obtain the regularity estimate of the Dirichlet problem and the Neumann problem for the Laplace operator on these spaces.展开更多
基金Supported by the National Natural Foundation of China(10671147)
文摘In this article, several weak Hardy spaces of Banach-space-valued martingales are introduced, some atomic decomposition theorems for them are established and their duals are investigated. The results closely depend on the geometrical properties of the Banach space in which the martingales take values.
基金supported by the Education Department Important Foundation of Hunan Province in China(10A074)supported by the Education Department Important Foundation of Hunan Provincein China(12A206)College of Mathematics and Computer Science,Key Laboratory of High Performance Computing and Stochastic Information Processing(Ministry of Education of China),Hunan Normal University,and the Construct Program of the Key Discipline in Hunan Province
文摘Let μ be a normal function on [0, 1). The atomic decomposition of the μ-Bergman space in the unit ball B is given for all p 〉 0.
基金supported by the National Natural Science Foundation of China(10871016)
文摘In this article, we establish some atomic decomposition theorems for martin- gale Hardy-Lorentz spaces. As applications, with the help of weak atomic decompositions, some interpolation theorems for martingale Hardy-Lorentz spaces are proved.
基金Sponsored by the National NSFC under grant No.19771063
文摘In this article,atomic decompositions and the duals of some B-valued r.v.se- quence spaces are investigated.The results show that it closely depends on the geometrical properties of the sequence that take values in.
文摘Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.
基金Sponsored by the NSF of South-Central University for Nationalities (YZZ08004)the Doctoral programme foundation of National Education Ministry of China
文摘For convolution-type Calderon-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is known that H5rmander condition can ensure the boundedness on Triebel-Lizorkin spaces Fp^0,q (1 〈 p,q 〈 ∞) and on a party of endpoint spaces FO,q (1 ≤ q ≤ 2), hut this idea is invalid for endpoint Triebel-Lizorkin spaces F1^0,q (2 〈 q ≤ ∞). In this article, the authors apply wavelets and interpolation theory to establish the boundedness on F1^0,q (2 〈 q ≤ ∞) under an integrable condition which approaches HSrmander condition infinitely.
文摘Let be a bounded smooth domain. In this paper, the authors define the Besov spaces Bpap on , establish the atomic decomposition of these spaces, and obtain the regularity estimate of the Dirichlet problem and the Neumann problem for the Laplace operator on these spaces.