Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expre...Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.展开更多
To evaluate the rationality of the excavation and support structure design in tunnel engineering, numerical simulation and structural deformation stability analysis in excavation and support in a traffic tunnel are ca...To evaluate the rationality of the excavation and support structure design in tunnel engineering, numerical simulation and structural deformation stability analysis in excavation and support in a traffic tunnel are carried out in combination with the practical geological conditions study. The computation results demonstrate that following excavation, the surrounding rock deforms minimally and has a large self-bearing capacity. The shotcrete-bolt structure in the initial support has small deformation and stress, ensuring that it meets the safety and stability requirements. The stress of the secondary lining structure is calculated, which can also meet the structural strength requirements. The traffic tunnel’s supporting system is a practical and cost-effective manner. The proposed study will provide a specific reference for the design and research of the support structures in traffic tunnels.展开更多
基金support by the National Natural Science Foundation of China (No.51174195)the Fundamental Research Funds for the Central Universities of China (No.2010QNA31)
文摘Comparing with the resin bolt, the hydraulic expansion bolt has different anchoring mechanism and application advantage. According to the working mechanism of the hydraulic expansion bolt, its anchoring force is expressed in four forms including support anchoring force, tension anchoring force, expansion anchoring force and tangent anchoring force, and their values can be obtained on the basis of each calculation formula. Among them, the expansion anchoring force, which is the unique anchoring force of the hydraulic expansion bolt, can provide confining pressure to increase the strength of rock. Aiming at solving the problem of stability control in the soft rock roadway in Jinbaotun Coal Mine which has a double layer of 40 U-type sheds and cannot provide enough resistance support to control floor heave, the study reveals the mechanism of floor heave in the soft rock roadway, and designs the reasonable support parameters of the hydraulic expansion bolts. The observed results of floor convergence indicate that the hydraulic expansion bolts can prevent the development and flow of the plastic zone in the floor rock to control floor heave. Research results enrich the control technology in the soft rock roadway.
基金National Natural Science Foundation of China(NSFC)under Contract(51428902)。
文摘To evaluate the rationality of the excavation and support structure design in tunnel engineering, numerical simulation and structural deformation stability analysis in excavation and support in a traffic tunnel are carried out in combination with the practical geological conditions study. The computation results demonstrate that following excavation, the surrounding rock deforms minimally and has a large self-bearing capacity. The shotcrete-bolt structure in the initial support has small deformation and stress, ensuring that it meets the safety and stability requirements. The stress of the secondary lining structure is calculated, which can also meet the structural strength requirements. The traffic tunnel’s supporting system is a practical and cost-effective manner. The proposed study will provide a specific reference for the design and research of the support structures in traffic tunnels.