针对大多数加密流量分类(encrypted traffic classification,ETC)模型由于标签数据稀缺而导致的性能下降问题,提出了一个基于对比学习的半监督加密流量分类(semisupervised encrypted traffic classification based on contrastive lear...针对大多数加密流量分类(encrypted traffic classification,ETC)模型由于标签数据稀缺而导致的性能下降问题,提出了一个基于对比学习的半监督加密流量分类(semisupervised encrypted traffic classification based on contrastive learning,SSETC-CL)模型。通过比较样本之间的相似性和差异性,SSETC-CL模型能够从大量无标注数据中学习到有用的表示,从而获得一个通用且优秀的特征编码网络,降低了下游任务对标签数据的依赖。本文在公有数据集ISCXVPN2016以及两个自采数据集上对SSETC-CL模型进行了评估。与其他基准模型相比,SSETC-CL模型在设定任务上的表现最佳,准确率最大提升了8.92%。实验结果表明,SSETC-CL模型不仅在预训练模型已知的流量上具有较高的精度,而且具备将预训练模型所获得的知识应用于未知流量的迁移能力。展开更多
属性级情感分析作为一种细粒度情感分析方法,目前在许多应用场景中都具有重要作用.然而,随着社交媒体和在线评论的日益广泛以及各类新兴领域的出现,使得跨领域属性级情感分析面临着标签数据不足以及源领域与目标领域文本分布差异等挑战...属性级情感分析作为一种细粒度情感分析方法,目前在许多应用场景中都具有重要作用.然而,随着社交媒体和在线评论的日益广泛以及各类新兴领域的出现,使得跨领域属性级情感分析面临着标签数据不足以及源领域与目标领域文本分布差异等挑战.目前已有许多数据增强方法试图解决这些问题,但现有方法生成的文本仍存在语义不连贯、结构单一以及特征与源领域过于趋同等问题.为了克服这些问题,提出一种基于大语言模型(large language model,LLM)数据增强的跨领域属性级情感分析方法.所提方法利用大模型丰富的语言知识,合理构建针对跨领域属性级别情感分析任务的引导语句,挖掘目标领域与源领域相似文本,通过上下文学习的方式,使用领域关联关键词引导LLM生成目标领域有标签文本数据,用以解决目标领域数据缺乏以及领域特异性问题,从而有效提高跨领域属性级情感分析的准确性和鲁棒性.所提方法在多个真实数据集中进行实验,实验结果表明,该方法可以有效提升基线模型在跨领域属性级情感分析中的表现.展开更多
文摘针对大多数加密流量分类(encrypted traffic classification,ETC)模型由于标签数据稀缺而导致的性能下降问题,提出了一个基于对比学习的半监督加密流量分类(semisupervised encrypted traffic classification based on contrastive learning,SSETC-CL)模型。通过比较样本之间的相似性和差异性,SSETC-CL模型能够从大量无标注数据中学习到有用的表示,从而获得一个通用且优秀的特征编码网络,降低了下游任务对标签数据的依赖。本文在公有数据集ISCXVPN2016以及两个自采数据集上对SSETC-CL模型进行了评估。与其他基准模型相比,SSETC-CL模型在设定任务上的表现最佳,准确率最大提升了8.92%。实验结果表明,SSETC-CL模型不仅在预训练模型已知的流量上具有较高的精度,而且具备将预训练模型所获得的知识应用于未知流量的迁移能力。
文摘属性级情感分析作为一种细粒度情感分析方法,目前在许多应用场景中都具有重要作用.然而,随着社交媒体和在线评论的日益广泛以及各类新兴领域的出现,使得跨领域属性级情感分析面临着标签数据不足以及源领域与目标领域文本分布差异等挑战.目前已有许多数据增强方法试图解决这些问题,但现有方法生成的文本仍存在语义不连贯、结构单一以及特征与源领域过于趋同等问题.为了克服这些问题,提出一种基于大语言模型(large language model,LLM)数据增强的跨领域属性级情感分析方法.所提方法利用大模型丰富的语言知识,合理构建针对跨领域属性级别情感分析任务的引导语句,挖掘目标领域与源领域相似文本,通过上下文学习的方式,使用领域关联关键词引导LLM生成目标领域有标签文本数据,用以解决目标领域数据缺乏以及领域特异性问题,从而有效提高跨领域属性级情感分析的准确性和鲁棒性.所提方法在多个真实数据集中进行实验,实验结果表明,该方法可以有效提升基线模型在跨领域属性级情感分析中的表现.