A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 ...An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 -873 K). The descriptive and predictive capabilities of the ANN model are com- pared with several phenomenological and physically based constitutive models. The ANN model has a much better applicability than the other models in characterization of the flow stress. The tempera- ture and the strain rate effects on the flow stress can be described successfully by the ANN model, with an average error of 1.78% for both quasi-static and dynamic loading conditions. Besides its high accuracy in prediction of the strain rate jump tests, the ANN model is more convenient in model es- tablishment and data processing. The ANN model developed in this study may serve as a valid and ef- fective tool to predict plastic behaviors of the 603 steel under complex loading conditions.展开更多
On the basis of analysis and selection of factors influencing operation cost of coal resources development, fuzzy set method and artificial neural network (ANN) were adopted to set up the classification analysis model...On the basis of analysis and selection of factors influencing operation cost of coal resources development, fuzzy set method and artificial neural network (ANN) were adopted to set up the classification analysis model of coal resources. The collected samples were classified by using this model. Meanwhile, the pattern recognition model for classifying of the coal resources was built according to the factors influencing operation cost. Based on the results achieved above, in the light of the theory of information diffusion, the calculation model for operation cost of coal resources development has been presented and applied in practice, showing that these models are reasonable.展开更多
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur...Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.展开更多
In order to improve weapon assignment(WA)accuracy in real scenario,an artificial neural network(ANN)model is built to calculate real-time weapon kill probabilities.Considering the WA characteristic,each input represen...In order to improve weapon assignment(WA)accuracy in real scenario,an artificial neural network(ANN)model is built to calculate real-time weapon kill probabilities.Considering the WA characteristic,each input representing one assessment index should be normalized properly.Therefore,the modified WA model is oriented from constant value to dynamic computation.Then an improved invasive weed optimization algorithm is applied to solve the WA problem.During search process,local search is used to improve the initial population,and seed reproduction is redefined to guarantee the mutation from multipoint to single point.In addition,the idea of vaccination and immune selection in biology is added into optimization process.Finally,simulation results verify the model′s rationality and effectiveness of the proposed algorithm.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
文摘An artificial neural network (ANN) model is established to predict plastic flow behaviors of the 603 armor steel, based on experiments over wide ranges of strain rates (0. 001 -4 500 s -1 ) and temperatures (288 -873 K). The descriptive and predictive capabilities of the ANN model are com- pared with several phenomenological and physically based constitutive models. The ANN model has a much better applicability than the other models in characterization of the flow stress. The tempera- ture and the strain rate effects on the flow stress can be described successfully by the ANN model, with an average error of 1.78% for both quasi-static and dynamic loading conditions. Besides its high accuracy in prediction of the strain rate jump tests, the ANN model is more convenient in model es- tablishment and data processing. The ANN model developed in this study may serve as a valid and ef- fective tool to predict plastic behaviors of the 603 steel under complex loading conditions.
文摘On the basis of analysis and selection of factors influencing operation cost of coal resources development, fuzzy set method and artificial neural network (ANN) were adopted to set up the classification analysis model of coal resources. The collected samples were classified by using this model. Meanwhile, the pattern recognition model for classifying of the coal resources was built according to the factors influencing operation cost. Based on the results achieved above, in the light of the theory of information diffusion, the calculation model for operation cost of coal resources development has been presented and applied in practice, showing that these models are reasonable.
文摘Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.
基金Supported by the National Natural Science Foundation of China(11102080,61374212)the Science and Technology on Electro-Optic Control Laboratory and Aeronautical Science Foundation of China(20135152047)
文摘In order to improve weapon assignment(WA)accuracy in real scenario,an artificial neural network(ANN)model is built to calculate real-time weapon kill probabilities.Considering the WA characteristic,each input representing one assessment index should be normalized properly.Therefore,the modified WA model is oriented from constant value to dynamic computation.Then an improved invasive weed optimization algorithm is applied to solve the WA problem.During search process,local search is used to improve the initial population,and seed reproduction is redefined to guarantee the mutation from multipoint to single point.In addition,the idea of vaccination and immune selection in biology is added into optimization process.Finally,simulation results verify the model′s rationality and effectiveness of the proposed algorithm.