期刊文献+
共找到6,154篇文章
< 1 2 250 >
每页显示 20 50 100
基于BP-ANN的人工渗滤系统去除总磷过程优化
1
作者 刘元坤 曹塬琪 +2 位作者 于艾鑫 李星 郭晓天 《中国环境科学》 北大核心 2025年第6期3151-3160,共10页
本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,... 本文利用BBD响应面法(BBD-RSM)和反向传播人工神经网络(BP-ANN)算法对活性炭吸附总磷(TP)的过程参数(接触时间、初始浓度、温度、pH值)进行了建模和预测,并结合遗传算法(GA)对BP-ANN模型中的反应条件进行优化.结果表明,在BBD-RSM模型中,P<0.0001,可较好的对TP的去除过程进行预测,接触时间为TP去除率最显著的参数,TP吸附过程中各因素的相对影响顺序为:接触时间>pH值>温度>初始浓度.采用BP-ANN模型进行优化,最佳网络结构为4-8-1.敏感性分析表明,影响TP去除率的因素依次为接触时间(34.05%)>pH值(28.67%)>温度(19.56%)>初始浓度(17.72%).基于BP-ANN模型,采用GA优化人工渗滤系统运行条件,对TP去除过程的优化结果为:接触时间为720.53min、初始浓度为2.75mg/L、温度为30.62℃、pH为5,达到最佳去除率(99.63%).试验验证分析表明,BP-ANN-GA较BBD-RSM的预测值与实验值相比拥有较高的R 2(0.9939)和较低的RSME(1.2851),说明该模型具有更好的预测能力,能更好的描述人工快速渗滤系统对TP的去除过程. 展开更多
关键词 BBD响应面法 反向传播人工神经网络 遗传算法 总磷 人工快速渗滤系统
在线阅读 下载PDF
Experimental study of laser cladding process and prediction of process parameters by artificial neural network(ANN) 被引量:3
2
作者 Rashi TYAGI Shakti KUMAR +2 位作者 Mohammad Shahid RAZA Ashutosh TRIPATHI Alok Kumar DAS 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3489-3502,共14页
Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combin... Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combinations of controllable parameters(microhardness and clad thickness).The microhardness and clad thickness are recorded at all the experimental runs and studied using Taguchi S/N ratio and the optimum controllable parametric combination is obtained.However,an artificial neural network(ANN)identifies different sets of optimal combinations from Taguchi method but they both got almost the same clad thickness and hardness values.The micro-hardness of cladded layer is found to be6.22 times(HV_(0.5)752)the SS304 hardness(HV_(0.5)121).The presence of nitride ceramics results in a higher micro hardness.The cladded surface is free from cracks and pores.The average clad thickness is found to be around 0.6 mm. 展开更多
关键词 laser cladding Taguchi orthogonal array artificial neural network MICROHARDNESS MICROSTRUCTURE
在线阅读 下载PDF
基于ANN-GA协同寻优的大跨度双曲桁架拱钢闸门结构优化设计
3
作者 王皓臣 张燎军 +3 位作者 张汉云 章寰宇 林润丰 宋琰 《水电能源科学》 北大核心 2025年第1期145-149,共5页
针对大跨度双曲桁架拱钢闸门结构的优化设计,采用拉丁超立方随机抽样方法建立试验抽样点,通过对抽样点的训练建立人工神经网络(ANN)预测模型;同时协同遗传算法(GA)的全局搜索能力,基于ANN模型构造相应的适应度函数,提出了一种ANN-GA协... 针对大跨度双曲桁架拱钢闸门结构的优化设计,采用拉丁超立方随机抽样方法建立试验抽样点,通过对抽样点的训练建立人工神经网络(ANN)预测模型;同时协同遗传算法(GA)的全局搜索能力,基于ANN模型构造相应的适应度函数,提出了一种ANN-GA协同优化的结构优化模型,并对某拟建60 m大跨度双曲桁架拱钢闸门关键构件进行结构优化设计。结果表明,ANN模型可有效应用于结构尺寸与闸门总质量及最大折算应力的非线性建模,训练后的ANN-GA模型可根据结构尺寸准确预测该结构尺寸下所对应的闸门总质量及最大应力值;通过建立基于ANN模型构建的适应度函数,GA可实现在ANN模型预测的基础上快速全局寻优并快速收敛,基于ANN-GA的协同优化方法对于闸门结构尺寸优化切实有效。研究成果可为闸门结构优化设计提供参考。 展开更多
关键词 钢闸门 结构优化设计 人工神经网络 遗传算法
在线阅读 下载PDF
Adaptive Bayesian inversion of pore water pressures based on artificial neural network : An earth dam case study
4
作者 AN Lu CARVAJAL Claudio +4 位作者 DIAS Daniel PEYRAS Laurent JENCK Orianne BREUL Pierre ZHANG Ting-ting 《Journal of Central South University》 CSCD 2024年第11期3930-3947,共18页
Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,... Most earth-dam failures are mainly due to seepage,and an accurate assessment of the permeability coefficient provides an indication to avoid a disaster.Parametric uncertainties are encountered in the seepage analysis,and may be reduced by an inverse procedure that calibrates the simulation results to observations on the real system being simulated.This work proposes an adaptive Bayesian inversion method solved using artificial neural network(ANN)based Markov Chain Monte Carlo simulation.The optimized surrogate model achieves a coefficient of determination at 0.98 by ANN with 247 samples,whereby the computational workload can be greatly reduced.It is also significant to balance the accuracy and efficiency of the ANN model by adaptively updating the sample database.The enrichment samples are obtained from the posterior distribution after iteration,which allows a more accurate and rapid manner to the target posterior.The method was then applied to the hydraulic analysis of an earth dam.After calibrating the global permeability coefficient of the earth dam with the pore water pressure at the downstream unsaturated location,it was validated by the pore water pressure monitoring values at the upstream saturated location.In addition,the uncertainty in the permeability coefficient was reduced,from 0.5 to 0.05.It is shown that the provision of adequate prior information is valuable for improving the efficiency of the Bayesian inversion. 展开更多
关键词 earth dam permeability coefficient pore water pressure monitoring data bayesian inversion artificial neural network
在线阅读 下载PDF
基于ANN方法的腐蚀管道失效压力预测及试验
5
作者 赵洪洋 梁旭 杨志国 《实验室研究与探索》 北大核心 2025年第6期105-111,共7页
准确预测腐蚀管道的失效压力对安全生产至关重要。传统的解析法和有限元法在复杂工况下存在局限性,人工神经网络(ANN)凭借优异的非线性映射能力和自适应学习特性,为解决此类问题提供了新途径。基于有限元法建立腐蚀API 5L X65管道模型,... 准确预测腐蚀管道的失效压力对安全生产至关重要。传统的解析法和有限元法在复杂工况下存在局限性,人工神经网络(ANN)凭借优异的非线性映射能力和自适应学习特性,为解决此类问题提供了新途径。基于有限元法建立腐蚀API 5L X65管道模型,生成2 520组仿真数据训练ANN模型,并建立失效压力预测方程。通过水压试验验证仿真模型的准确性,并优化预测方程。结果表明,ANN模型能有效捕捉缺陷参数对失效压力的影响规律,预测结果与试验数据的平均偏差为3.57%,在研究参数范围内表现出良好可靠性,为腐蚀管道的失效预测与安全评估提供科学依据。 展开更多
关键词 腐蚀管道 失效压力 人工神经网络 有限元仿真
在线阅读 下载PDF
基于POD-ANN的气冷堆多物理场耦合预测研究
6
作者 曹忠彬 马誉高 +2 位作者 邱志方 黄善仿 魏宗岚 《原子能科学技术》 北大核心 2025年第7期1427-1436,共10页
由于堆芯中存在不同物理场的相互作用,气冷堆在安全设计方面存在一定挑战,因此有必要构建气冷堆核、热、力等多物理场之间的耦合。但常规的堆芯多物理场耦合计算数据交换和网格映射效率低,且计算资源消耗量大,人工神经网络作为具有强大... 由于堆芯中存在不同物理场的相互作用,气冷堆在安全设计方面存在一定挑战,因此有必要构建气冷堆核、热、力等多物理场之间的耦合。但常规的堆芯多物理场耦合计算数据交换和网格映射效率低,且计算资源消耗量大,人工神经网络作为具有强大非线性拟合能力的方法,与模型降阶方法相结合可以实现多物理场耦合结果的快速获取。本研究针对小型气冷堆进行建模和耦合计算,并分析其堆芯核热力耦合特性,提出基于本征正交分解和人工神经网络(POD-ANN)的堆芯核热力耦合代理模型,以耦合计算结果作为数据基础,经降维和神经网络训练后,实现了核热力耦合结果的预测。结果表明,与应力场、位移场相比,温度场代理模型的预测效果更好。堆芯燃料温度、应力和位移的平均误差分别为1.75 K、1.47 MPa和0.026 mm,平均相对误差均小于3%,可见堆芯代理模型预测值与实际堆芯耦合计算结果符合较好。表明POD-ANN方法具有一定的有效性和可行性,为气冷堆瞬态分析中应用多物理场耦合提供了新的思路和方向。 展开更多
关键词 气冷堆 本征正交分解 人工神经网络 多物理场耦合
在线阅读 下载PDF
基于ANN代理模型的单螺杆计量段结构参数优化
7
作者 王超元 陈欣 +3 位作者 林增 祁纪浩 庞志威 沙金 《中国塑料》 北大核心 2025年第3期95-101,共7页
在挤出机单螺杆计量段二维解析建模的基础上,采用交叉验证方法构建人工神经网络(artificial neural network,ANN)模型并对其进行了超参数优化,以有效地映射挤出机工作条件和结构参数与生产率和功耗之间的复杂非线性关系。提出利用ANN代... 在挤出机单螺杆计量段二维解析建模的基础上,采用交叉验证方法构建人工神经网络(artificial neural network,ANN)模型并对其进行了超参数优化,以有效地映射挤出机工作条件和结构参数与生产率和功耗之间的复杂非线性关系。提出利用ANN代理模型,结合NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)算法对螺杆计量段的结构参数进行多目标优化,并通过TOPSIS(technique for order preference by similarity to an ideal solution)法得到最优生产率和功耗组合的结构参数。相关工作对单螺杆计量段结构参数的智能化设计具有理论指导意义。 展开更多
关键词 单螺杆结构参数 人工神经网络 多目标优化 NSGA-II
在线阅读 下载PDF
基于回弹法预测岩石单轴抗压强度的MLP-ANN模型
8
作者 李明 窦斌 +4 位作者 朴昇昊 马云龙 王帅 孙左帅 王祥 《地质科技通报》 北大核心 2025年第1期164-174,共11页
岩石单轴抗压强度是岩土工程中的重要参数,合理确定其数值对工程设计至关重要。本文提出了一种基于多层感知机的人工神经网络(MLP-ANN)模型,用于预测岩石单轴抗压强度。该模型以岩性、节理面、施密特锤回弹高度和纵波波速为输入参数,采... 岩石单轴抗压强度是岩土工程中的重要参数,合理确定其数值对工程设计至关重要。本文提出了一种基于多层感知机的人工神经网络(MLP-ANN)模型,用于预测岩石单轴抗压强度。该模型以岩性、节理面、施密特锤回弹高度和纵波波速为输入参数,采用最大最小归一化进行参数标准化,并通过k折交叉验证提高模型的泛化能力。为优化模型性能,文章探讨了神经元数量、数据分割比例和激活函数对预测结果的影响。经对比验证,研究确定了最优模型配置:神经元数量为8,训练集与测试集比例为8∶2,激活函数选用Tanh函数。模型预测值与实际值对比分析结果表明,最优模型的平均绝对误差为3.500 MPa,均方根误差为5.836 MPa。结果表明,该模型预测误差较小,预测准确率较高,具有较好的实用性。 展开更多
关键词 单轴抗压强度 施密特锤实验 人工神经网络 模型评价 回弹法
在线阅读 下载PDF
Artificial Neural Networks Applied to Landslide Susceptibility Mapping in the Northern Area of the Central Rif(Morocco)
9
作者 M.Amharrak J.El khattabi +2 位作者 B.Louche L.Asebriy E.Carlier 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期64-64,共1页
Recently,Artificial Neural Networks(ANNs)have been used for various scientific and engineering applications essentially because they allow the modeling of a process,which starts from the database containing the variab... Recently,Artificial Neural Networks(ANNs)have been used for various scientific and engineering applications essentially because they allow the modeling of a process,which starts from the database containing the variables that describe that particular process.They have already been applied to the study of landslides in particular,with reference to the indirect determination of the triggering 展开更多
关键词 LANDSLIDE SUSCEPTIBILITY statistical approach artificial neural network CENTRAL RIF
在线阅读 下载PDF
Backflow Transformation for A=3 Nuclei with Artificial Neural Networks
10
作者 YANG Yilong ZHAO Pengwei 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期673-678,共6页
A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artif... A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy. 展开更多
关键词 nuclear many-body problem quantum Monte Carlo artificial neural network backflow transformation
在线阅读 下载PDF
Chemometric Amylose Modeling and Sample Selection for Global Calibration Using Artificial Neural Networks
11
作者 SHIMIZU N OKADOME H +2 位作者 WADA D KIMURA T OHTSUBO K 《食品科学》 EI CAS CSCD 北大核心 2008年第8期118-124,共7页
Chemometric amylose modeling for global calibration,using whole grain near infrared transmittance spectra and sample selection,was used in an artificial neural network(ANN) ,to assess the global and local models gener... Chemometric amylose modeling for global calibration,using whole grain near infrared transmittance spectra and sample selection,was used in an artificial neural network(ANN) ,to assess the global and local models generated,based on samples of newly bred Indica,Japonica and rice. Global sample sets had a wide range of sample variation for amylose content(0 to 25.9%) . The local sample set,Japonica sample,had relatively low amylose content and a narrow sample variation(amylose;12.3% to 21.0%) . For sample selection the CENTER algorithm was applied to generate calibration,validation and stop sample sets. Spectral preprocessing was found to reduce the optimum number of partial least squares(PLS) components for amylose content and thus enhance the robustness of the local calibration. The best model was found to be an ANN global calibration with spectral preprocessing;the next was a PLS global calibration using standard spectra. These results pose the question whether an ANN algorithm with spectral preprocessing could be developed for global and local calibration models or whether PLS without spectral preprocessing should be developed for global calibration models. We suggest that global calibration models incorporating an ANN may be used as a universal calibration model. 展开更多
关键词 直链淀粉 人工神经网络 分析方法 食品标准
在线阅读 下载PDF
基于ANN的HVFAC拉伸性能预测评价 被引量:1
12
作者 倪彤元 杜鑫 +3 位作者 莫云波 黄森乐 杨杨 刘金涛 《材料导报》 EI CAS CSCD 北大核心 2024年第10期75-83,共9页
基于人工神经网络(ANN)预测混凝土拉伸性能,对研究混凝土开裂机制具有重要意义。基于团队实验数据获得不同粉煤灰掺量、骨胶比、水胶比和养护龄期下大掺量粉煤灰混凝土(HVFAC)的抗压强度、极限拉伸应变、抗拉强度和拉伸弹性模量数据,用... 基于人工神经网络(ANN)预测混凝土拉伸性能,对研究混凝土开裂机制具有重要意义。基于团队实验数据获得不同粉煤灰掺量、骨胶比、水胶比和养护龄期下大掺量粉煤灰混凝土(HVFAC)的抗压强度、极限拉伸应变、抗拉强度和拉伸弹性模量数据,用均方根误差(RMSE)最小原则建立一种预测HVFAC拉伸性能的ANN模型,并用公开发表的文献数据对该预测模型可靠性进行分析评估。结果表明:模型预测结果与实验结果的相关系数均大于0.94,文献中的实验值与模型预测值的误差均在±20%以内,说明所建立的模型有较高的预测精度。基于ANN影响权重分析发现:骨胶比对HVFAC的抗压强度、极限拉伸应变和拉伸弹性模量的影响最大;对于HVFAC的拉伸性能,在早龄期时水胶比的影响程度较大,但随着龄期的延长,粉煤灰掺量的影响程度逐渐上升并超过水胶比。 展开更多
关键词 人工神经网络 粉煤灰混凝土 抗拉强度 弹性模量 极限拉伸应变
在线阅读 下载PDF
基于MLR–ANN算法的地应力场反演与裂缝预测 被引量:1
13
作者 张伯虎 胡尧 +2 位作者 王燕 陈伟 罗超 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期1-12,共12页
中国页岩气储层埋藏深,受构造运动影响,地应力分布规律复杂,传统方法很难准确反演区域地应力大小和方向。提出多元线性回归和人工神经网络的耦合算法,对川南长宁—建武区块的页岩气储层及周边地应力场进行反演,并采用综合破裂系数法,对... 中国页岩气储层埋藏深,受构造运动影响,地应力分布规律复杂,传统方法很难准确反演区域地应力大小和方向。提出多元线性回归和人工神经网络的耦合算法,对川南长宁—建武区块的页岩气储层及周边地应力场进行反演,并采用综合破裂系数法,对储层裂缝进行预测,划分裂缝发育区域。研究表明,基于多元回归和神经网络的耦合算法能准确反演区域的地应力场分布规律。研究区的地应力以挤压应力为主,方向在NE115°左右。受构造运动产生的断层周边应力较为集中,易发育剪切裂缝,裂缝以发育和较发育程度为主。研究区在邻近龙马溪组底部的五峰组上段和构造大断层部位裂缝发育程度较高。研究成果对该区块完善页岩气开采的井网布置、压裂优化设计和套管损坏防治等有一定的参考价值。 展开更多
关键词 多元线性回归 神经网络算法 页岩气储层 地应力场反演 裂缝预测
在线阅读 下载PDF
基于HGS-ANN混合模型的爆破振动预测 被引量:1
14
作者 王鑫瑀 曹鹏飞 +1 位作者 肖一清 徐国权 《矿冶工程》 CAS 北大核心 2024年第4期159-163,共5页
将饥饿游戏搜索算法(HGS)与神经网络算法(ANN)相结合,开发了一种新的混合模型HGS-ANN,用来预测爆破振动。分别基于数据分组处理方法(GMDH)、支持向量机(SVM)、神经网络算法(ANN)以及萨道夫斯基经验公式建立了4种不同预测模型,并与HGS-AN... 将饥饿游戏搜索算法(HGS)与神经网络算法(ANN)相结合,开发了一种新的混合模型HGS-ANN,用来预测爆破振动。分别基于数据分组处理方法(GMDH)、支持向量机(SVM)、神经网络算法(ANN)以及萨道夫斯基经验公式建立了4种不同预测模型,并与HGS-ANN模型进行对比,评估模型性能。从某露天矿山收集了32组爆破数据,选择爆心距、最大单段药量、总药量、抵抗线、孔距、孔数、孔深等7个自变量作为输入参数,选择质点振动速度作为输出参数,以均方根误差(RMSE)和决定性系数(R^(2))作为模型性能评价指标,对所建立的模型性能进行对比。结果表明,HGS-ANN模型的RMSE和R^(2)分别为0.833和0.963,性能优于其他4种模型。HGS-ANN模型可以作为一个辅助工具来优化爆破设计,降低爆破地震效应。 展开更多
关键词 爆破振动 饥饿游戏搜索算法 神经网络 振动预测
在线阅读 下载PDF
Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network 被引量:6
15
作者 QIN Qiang FENG Yunwen LI Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1317-1326,共10页
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co... The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm. 展开更多
关键词 structural reliability enhanced cuckoo search(ECS) artificial neural network(ann) cuckoo search(CS) algorithm
在线阅读 下载PDF
基于ANN的RECFST短柱轴压承载力预测
16
作者 杜运兴 刁俊杰 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2024年第3期414-422,共9页
目的针对相关设计规范和文献在计算圆端形截面钢管混凝土短柱轴压承载力上的局限性,开发高精高效的轴压承载力预测模型。方法首先,基于国内外已有的RECFST短柱轴压试验研究结果建立有限元模型,并通过验证;其次,基于Python脚本批量生成... 目的针对相关设计规范和文献在计算圆端形截面钢管混凝土短柱轴压承载力上的局限性,开发高精高效的轴压承载力预测模型。方法首先,基于国内外已有的RECFST短柱轴压试验研究结果建立有限元模型,并通过验证;其次,基于Python脚本批量生成有限元模型,建立涵盖广泛输入参数的数据集;然后,利用数据集开发高精度的ANN模型并与相关规范和文献结果进行比较;最后,基于ANN模型开发GUI图形用户界面工具。结果ANN模型预测值与试验结果之比的平均值N ANN/N u=0.98,模型预测误差远低于相关规范和文献公式预测误差;ANN模型的均方误差K MSE=7.3734×10-7,总数据样本回归值R=0.99963,表明了ANN模型的有效性以及预测结果的精确性。结论ANN模型可以准确预测RECFST短柱的轴压承载力,基于模型开发的GUI工具简便实用。 展开更多
关键词 ann RECFST短柱 轴压承载力 图形用户界面工具
在线阅读 下载PDF
Relationship between fatigue life of asphalt concrete and polypropylene/polyester fibers using artificial neural network and genetic algorithm 被引量:6
17
作者 Morteza Vadood Majid Safar Johari Ali Reza Rahai 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1937-1946,共10页
While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using po... While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96). 展开更多
关键词 hot mix asphalt fatigue property reinforced fiber artificial neural network genetic algorithm
在线阅读 下载PDF
Prediction about residual stress and microhardness of material subjected to multiple overlap laser shock processing using artificial neural network 被引量:9
18
作者 WU Jia-jun HUANG Zheng +4 位作者 QIAO Hong-chao WEI Bo-xin ZHAO Yong-jie LI Jing-feng ZHAO Ji-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3346-3360,共15页
In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on or... In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on orthogonal experimental design.The experimental data of residual stress and microhardness were measured in the same depth.The residual stress and microhardness laws were investigated and analyzed.Artificial neural network(ANN)with four layers(4-N-(N-1)-2)was applied to predict the residual stress and microhardness of FGH95 subjected to multiple overlap LSP.The experimental data were divided as training-testing sets in pairs.Laser energy,overlap rate,shocked times and depth were set as inputs,while residual stress and microhardness were set as outputs.The prediction performances with different network configuration of developed ANN models were compared and analyzed.The developed ANN model with network configuration of 4-7-6-2 showed the best predict performance.The predicted values showed a good agreement with the experimental values.In addition,the correlation coefficients among all the parameters and the effect of LSP parameters on materials response were studied.It can be concluded that ANN is a useful method to predict residual stress and microhardness of material subjected to LSP when with limited experimental data. 展开更多
关键词 laser shock processing residual stress MICROHARDNESS artificial neural network
在线阅读 下载PDF
Flame image recognition of alumina rotary kiln by artificial neural network and support vector machine methods 被引量:18
19
作者 张红亮 邹忠 +1 位作者 李劼 陈湘涛 《Journal of Central South University of Technology》 EI 2008年第1期39-43,共5页
Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificia... Based on the Fourier transform, a new shape descriptor was proposed to represent the flame image. By employing the shape descriptor as the input, the flame image recognition was studied by the methods of the artificial neural network(ANN) and the support vector machine(SVM) respectively. And the recognition experiments were carried out by using flame image data sampled from an alumina rotary kiln to evaluate their effectiveness. The results show that the two recognition methods can achieve good results, which verify the effectiveness of the shape descriptor. The highest recognition rate is 88.83% for SVM and 87.38% for ANN, which means that the performance of the SVM is better than that of the ANN. 展开更多
关键词 rotary kiln flame image image recognition shape descriptor artificial neural network support vector machine
在线阅读 下载PDF
Application of artificial neural network for calculating anisotropic friction angle of sands and effect on slope stability 被引量:3
20
作者 Hamed Farshbaf Aghajani Hossein Salehzadeh Habib Shahnazari 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1878-1891,共14页
The anisotropy effect is one of the most prominent phenomena in soil mechanics. Although many experimental programs have investigated anisotropy in sand, a computational procedure for determining anisotropy is lacking... The anisotropy effect is one of the most prominent phenomena in soil mechanics. Although many experimental programs have investigated anisotropy in sand, a computational procedure for determining anisotropy is lacking. Thus, this work aims to develop a procedure for connecting the sand friction angle and the loading orientation. All principal stress rotation tests in the literatures were processed via an artificial neural network. Then, with sensitivity analysis, the effect of intrinsic soil properties,consolidation history, and test sample characteristics on enhancing anisotropy was examined. The results imply that decreasing the grain size of the soil increases the effect of anisotropy on soil shear strength. In addition, increasing the angularity of grains increases the anisotropy effect in the sample. The stability of a sandy slope was also examined by considering the anisotropy in shear strength parameters. If the anisotropy effect is neglected, slope safety is overestimated by 5%-25%. This deviation is more apparent in flatter slopes than in steeper ones. However, the critical slip surface in the most slopes is the same in isotropic and anisotropic conditions. 展开更多
关键词 ANISOTROPY artificial neural network SAND principal stress rotation slope stability
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部