We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th...We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified.展开更多
针对传统人工操控塔式起重机在运输货物时易导致路径拐点多、负载摆动大的问题,提出一种改进的人工鱼群塔式起重机智能路径规划的新算法。根据塔式起重机的工作环境,建立三维的地图环境模型来模拟障碍物较多的复杂建筑环境,并结合起重...针对传统人工操控塔式起重机在运输货物时易导致路径拐点多、负载摆动大的问题,提出一种改进的人工鱼群塔式起重机智能路径规划的新算法。根据塔式起重机的工作环境,建立三维的地图环境模型来模拟障碍物较多的复杂建筑环境,并结合起重机在建筑场所的运行特点,对传统人工鱼群算法(artificial fish swarm algorithm, AFSA)进行改进,采用自适应策略让鱼群在寻优过程中的状态不断变化,及时调整自身的移动步长和视野,并基于生存竞争机制对人工鱼的随机行为进行改进,在一定程度上改善了算法的寻优能力,利用三次方样条数据插值拟合曲线得到更适合塔式起重机的光滑避障路径。仿真结果表明,改进后的算法为塔式起重机在障碍物较多的复杂建筑环境下找到一条最优避障路径。展开更多
为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish s...为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。展开更多
针对电力系统中冗余信息的传输对网络资源利用率的不利影响,基于粒子群和人工鱼群算法,提出了改进事件触发机制的电力系统负荷频率控制(load frequency control,LFC)。针对事件触发阈值与其对于事件触发机制性能的影响,分别改进了粒子...针对电力系统中冗余信息的传输对网络资源利用率的不利影响,基于粒子群和人工鱼群算法,提出了改进事件触发机制的电力系统负荷频率控制(load frequency control,LFC)。针对事件触发阈值与其对于事件触发机制性能的影响,分别改进了粒子群和人工鱼群算法,在算法的前期采用改进的鱼群算法,在算法的后期利用改进的粒子群算法,以系统性能为优化目标对事件触发阈值进行优化设计,减少了冗余信息的传输,增加了网络资源的利用率。构造改进的Lyapunov泛函,利用线性矩阵不等式方法,建立了LFC系统[H∞]稳定的充分条件。构建2区域LFC系统以及IEEE-39节点仿真模型验证所提方法的有效性和适用性。仿真结果表明,所设计的算法能够节省网络通信资源,降低多区域电力系统间的信息传输频率。展开更多
基金Project(51779052)supported by the National Natural Science Foundation of ChinaProject(QC2016062)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(614221503091701)supported by the Research Fund from Science and Technology on Underwater Vehicle Laboratory,ChinaProject(LBH-Q17046)supported by the Heilongjiang Postdoctoral Funds for Scientific Research Initiation,ChinaProject(HEUCFP201741)supported by the Fundamental Research Funds for the Central Universities,China
文摘We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified.
文摘针对传统人工操控塔式起重机在运输货物时易导致路径拐点多、负载摆动大的问题,提出一种改进的人工鱼群塔式起重机智能路径规划的新算法。根据塔式起重机的工作环境,建立三维的地图环境模型来模拟障碍物较多的复杂建筑环境,并结合起重机在建筑场所的运行特点,对传统人工鱼群算法(artificial fish swarm algorithm, AFSA)进行改进,采用自适应策略让鱼群在寻优过程中的状态不断变化,及时调整自身的移动步长和视野,并基于生存竞争机制对人工鱼的随机行为进行改进,在一定程度上改善了算法的寻优能力,利用三次方样条数据插值拟合曲线得到更适合塔式起重机的光滑避障路径。仿真结果表明,改进后的算法为塔式起重机在障碍物较多的复杂建筑环境下找到一条最优避障路径。
文摘生产规划过程需要同时考虑装配序列规划(Assembly Sequence Planning,ASP)和装配线平衡(Assembly Line Balancing,ALB)。针对ASP和ALB的多项式复杂程度的非确定性问题(Non-Deterministic Polynomial Hard,NP难题)及二者耦合问题,以产品结构图为基础,结合物料清单(Bill of Material,BOM)层次图构建装配约束矩阵,分析产品内部各子装配体独立装配可行性,并对子装配体分拆以获得可行的装配序列矩阵。其次,以工作站最大装配时间、装配方向和工具切换次数、站间平衡为目标,构建综合ASP和ALB的联合规划模型。提出基于Pareto解集的混合人工鱼群算法(Hybrid Artificial Fish Swarm Algorithm,HAFSA),采用自适应视野串行觅食,减少并行觅食重复搜索。对人工鱼群算法得到的装配序列进行粒子群优化(Particle Swarm Optimization,PSO)操作,提高跳出局部最优的可能。将所提算法应用于某装配实例,与基本AFSA、PSO算法对比,验证算法有效性。
文摘为进一步提高有载分接开关(on-load tap changer,OLTC)机械状态监测的准确性,文中基于优化品质因数可调小波变换(tunable quality wavelet transform,TQWT)对OLTC切换过程中的振动信号进行了分析。即使用人工鱼群算法(artificial fish swarm algorithm,AFSA)基于分解余量与整体正交系数研究了TQWT的优化分解方法,计算得到了OLTC振动信号的多个子序列,构建了基于优化孪生支持向量机(twin support vector machine,TWSVM)的OLTC机械故障诊断模型。对某CM型OLTC正常与典型机械故障下振动信号的分析结果表明,所提优化TQWT分解方法有效提高了OLTC振动信号分解结果的准确性。相对于其他诊断模型,所构建AFSA-TWSVM的OLTC机械故障诊断模型分类效果好且收敛速度更快。
文摘针对电力系统中冗余信息的传输对网络资源利用率的不利影响,基于粒子群和人工鱼群算法,提出了改进事件触发机制的电力系统负荷频率控制(load frequency control,LFC)。针对事件触发阈值与其对于事件触发机制性能的影响,分别改进了粒子群和人工鱼群算法,在算法的前期采用改进的鱼群算法,在算法的后期利用改进的粒子群算法,以系统性能为优化目标对事件触发阈值进行优化设计,减少了冗余信息的传输,增加了网络资源的利用率。构造改进的Lyapunov泛函,利用线性矩阵不等式方法,建立了LFC系统[H∞]稳定的充分条件。构建2区域LFC系统以及IEEE-39节点仿真模型验证所提方法的有效性和适用性。仿真结果表明,所设计的算法能够节省网络通信资源,降低多区域电力系统间的信息传输频率。