期刊文献+
共找到1,040篇文章
< 1 2 52 >
每页显示 20 50 100
Hybrid artificial bee colony algorithm with variable neighborhood search and memory mechanism 被引量:59
1
作者 FAN Chengli FU Qiang +1 位作者 LONG Guangzheng XING Qinghua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期405-414,共10页
Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie... Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC. 展开更多
关键词 artificial bee colony(abc) hybrid artificial bee colony(Habc) variable neighborhood search factor memory mechanism
在线阅读 下载PDF
Improved artificial bee colony algorithm with mutual learning 被引量:7
2
作者 Yu Liu Xiaoxi Ling +1 位作者 Yu Liang Guanghao Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期265-275,共11页
The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs ... The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments. 展开更多
关键词 artificial bee colony (abc algorithm numerical func- tion optimization swarm intelligence mutual learning.
在线阅读 下载PDF
Artificial bee colony algorithm with comprehensive search mechanism for numerical optimization 被引量:5
3
作者 Mudong Li Hui Zhao +1 位作者 Xingwei Weng Hanqiao Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期603-617,共15页
The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is... The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms. 展开更多
关键词 artificial bee colony (abc function optimization search strategy population initialization Wilcoxon signed ranks test.
在线阅读 下载PDF
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm 被引量:8
4
作者 Haidong Xu Mingyan Jiang Kun Xu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期388-396,共9页
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble... The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments. 展开更多
关键词 artificial bee colony(abc) algorithm Archimedean copula estimation of distribution algorithm(ACEDA) ACEDA based on artificial be
在线阅读 下载PDF
An enhanced artificial bee colony optimizer and its application to multi-level threshold image segmentation 被引量:13
5
作者 GAO Yang LI Xu +1 位作者 DONG Ming LI He-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期107-120,共14页
A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrich... A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm. 展开更多
关键词 artificial bee colony local search swarm intelligence image segmentation
在线阅读 下载PDF
A novel hybrid algorithm based on a harmony search and artificial bee colony for solving a portfolio optimization problem using a mean-semi variance approach 被引量:4
6
作者 Seyed Mohammad Seyedhosseini Mohammad Javad Esfahani Mehdi Ghaffari 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期181-188,共8页
Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk... Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk factor in drawing up an efficient frontier and the optimal portfolio. Since semi-variance offers a better estimation of the actual risk portfolio, it was used as a measure to approximate the risk of investment in this work. The optimal portfolio selection is one of the non-deterministic polynomial(NP)-hard problems that have not been presented in an exact algorithm, which can solve this problem in a polynomial time. Meta-heuristic algorithms are usually used to solve such problems. A novel hybrid harmony search and artificial bee colony algorithm and its application were introduced in order to draw efficient frontier portfolios. Computational results show that this algorithm is more successful than the harmony search method and genetic algorithm. In addition, it is more accurate in finding optimal solutions at all levels of risk and return. 展开更多
关键词 portfolio optimizations mean-variance model mean semi-variance model harmony search and artificial bee colony efficient frontier
在线阅读 下载PDF
Automatic software fault localization based on artificial bee colony 被引量:2
7
作者 Linzhi Huang Jun Ai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1325-1332,共8页
Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have... Software debugging accounts for a vast majority of the financial and time costs in software developing and maintenance. Thus, approaches of software fault localization that can help automate the debugging process have become a hot topic in the field of software engineering. Given the great demand for software fault localization, an approach based on the artificial bee colony (ABC) algorithm is proposed to be integrated with other related techniques. In this process, the source program is initially instrumented after analyzing the dependence information. The test case sets are then compiled and run on the instrumented program, and execution results are input to the ABC algorithm. The algorithm can determine the largest fitness value and best food source by calculating the average fitness of the employed bees in the iteralive process. The program unit with the highest suspicion score corresponding to the best test case set is regarded as the final fault localization. Experiments are conducted with the TCAS program in the Siemens suite. Results demonstrate that the proposed fault localization method is effective and efficient. The ABC algorithm can efficiently avoid the local optimum, and ensure the validity of the fault location to a larger extent. 展开更多
关键词 software debugging software fault localization arti-ficial bee colony (abc algorithm program instrumentation.
在线阅读 下载PDF
An effective discrete artificial bee colony algorithm for flow shop scheduling problem with intermediate buffers 被引量:3
8
作者 张素君 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3471-3484,共14页
An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti... An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value. 展开更多
关键词 discrete artificial bee colony algorithm flow shop scheduling problem with intermediate buffers destruction and construction tournament selection
在线阅读 下载PDF
Hybridizing artificial bee colony with biogeography-based optimization for constrained mechanical design problems 被引量:2
9
作者 蔡绍洪 龙文 焦建军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2250-2259,共10页
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c... A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches. 展开更多
关键词 artificial bee colony biogeography-based optimization constrained optimization mechanical design problem
在线阅读 下载PDF
Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm 被引量:15
10
作者 ZHANG Dong-Li TANG Ying-Gan GUAN Xin-Ping 《自动化学报》 EI CSCD 北大核心 2014年第5期973-980,共8页
关键词 PID控制器 优化设计 VR系统 群算法 分数阶 工蜂 自动电压调节器 搜索范围
在线阅读 下载PDF
S-box:six-dimensional compound hyperchaotic map and artificial bee colony algorithm 被引量:1
11
作者 Ye Tian Zhimao Lu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期232-241,共10页
Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes th... Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria. 展开更多
关键词 substitution boxes(S-boxes) multiple cryptographic criteria six-dimensional compound hyperchaotic map artificial bee colony algorithm(abc).
在线阅读 下载PDF
基于ABC-LSTM模型的锂离子电池剩余使用寿命预测 被引量:2
12
作者 刘勇 于怀汶 +3 位作者 刘大鹏 穆勇 王瀛洲 张秀宇 《储能科学与技术》 北大核心 2025年第1期331-345,共15页
为了保证储能系统的安全稳定运行,准确预测锂离子电池的剩余使用寿命(remaining useful life,RUL)至关重要。本工作提出了一种基于人工蜂群算法(artificial bee colony,ABC)和结合dropout技术的长短期记忆网络(long short-term memory,L... 为了保证储能系统的安全稳定运行,准确预测锂离子电池的剩余使用寿命(remaining useful life,RUL)至关重要。本工作提出了一种基于人工蜂群算法(artificial bee colony,ABC)和结合dropout技术的长短期记忆网络(long short-term memory,LSTM)相结合的综合预测模型,可有效提高锂离子电池RUL预测的准确性。首先,利用dropout正则化方法有效减轻过拟合现象的优势,提高预测模型的泛化能力。其次,引入针对容量回升及数据噪声问题的激活层网络结构,显著提升模型对复杂非线性数据的处理能力。然后,结合ABC算法优化LSTM综合预测模型的超参数,避免模型陷入局部最优解,提高RUL预测精度。最后,通过NASA研究中心及CALCE的公开数据集验证所提模型的预测准确性和鲁棒性。本工作对基于40%和60%训练数据的不同算法预测性能进行实验分析验证,并与麻雀优化算法、座头鲸优化算法等群体优化算法进行比较。实验结果表明,所提出的ABC-LSTM综合预测模型可以更加准确地捕获锂离子电池容量退化的全局趋势及局部特征,其中60%比例的RUL预测结果的均方根误差平均保持在1.02%以内,平均绝对误差平均保持在0.86%以内,拟合系数高达97%以上。 展开更多
关键词 锂离子电池 剩余使用寿命预测 长短期记忆网络 人工蜂群算法 dropout技术
在线阅读 下载PDF
基于IABC-GA的管路协同机舱设备布局优化方法研究
13
作者 王文双 杨远松 +2 位作者 刘海洋 杨明君 林焰 《大连理工大学学报》 CAS 北大核心 2025年第1期67-78,共12页
为解决船舶机舱整体布局优化设计问题,提出一种基于改进人工蜂群遗传算法(IABC-GA)的管路协同设备布局优化设计方法以获得最佳设备布局方案和管路布局方案.在人工蜂群算法和遗传算法的基础上,提出一种既适应设备布局优化也适应管路路径... 为解决船舶机舱整体布局优化设计问题,提出一种基于改进人工蜂群遗传算法(IABC-GA)的管路协同设备布局优化设计方法以获得最佳设备布局方案和管路布局方案.在人工蜂群算法和遗传算法的基础上,提出一种既适应设备布局优化也适应管路路径寻优的改进算法,结合协同进化思想,将船舶机舱整体布局优化问题拆解为互相关联的设备布局问题和管路布局问题,两者在相互影响的情况下协同进化,最终得到最佳的船舶机舱布局设计方案.通过对实船机舱的仿真实验,验证了管路协同设备布局优化方法的可行性与可靠性.设备布局方面,与原始设备布局相比效果提升59.5%;船舶机舱整体布局方面,与先进行设备布局优化再进行管路布局优化相比效果提升11.8%. 展开更多
关键词 改进人工蜂群遗传算法(Iabc-GA) 船舶机舱 设备布局优化 协同进化
在线阅读 下载PDF
数控压机伺服控制系统复合控制器I-ABC与PID优化 被引量:2
14
作者 陈杰 泮进明 《机械设计与制造》 北大核心 2024年第1期200-203,共4页
为了提高数控压机伺服控制系统的控制精度,针对伺服控制系统运行控制过程构建数学模型,在人工蜂群算法基础上融入了云分析模型,之后采用改进人工蜂群算法(Improved Artificial Bee Colony,I-ABC)调节比例-积分-微分(Proportional Integr... 为了提高数控压机伺服控制系统的控制精度,针对伺服控制系统运行控制过程构建数学模型,在人工蜂群算法基础上融入了云分析模型,之后采用改进人工蜂群算法(Improved Artificial Bee Colony,I-ABC)调节比例-积分-微分(Proportional Integral Differential,PID)参数,建立了一种复合控制方法。研究结果表明:以I-ABC进行PID控制时,可以使幅度差降低到0.4%,相位差基本在-0.54°之内,系统加载精度也获得了明显提升,表现出了更优的跟踪性能。以I-ABC进行PID控制时,能够对多余力起到明显抑制作用,响应速度也获得明显提升,可以有效满足系统的准确控制要求。在系统内加入干扰信号,引入I-ABC实施PID调节可以减小系统超调量,还可以获得更短调节时间,使系统获得更强抗干扰性能。 展开更多
关键词 数控压机 伺服控制系统 改进人工蜂群算法 比例-积分-微分 复合控制器 抗干扰
在线阅读 下载PDF
基于ABC-BP神经网络的地铁盾构隧道地层识别及复合比预测 被引量:4
15
作者 郭勇 郭小霖 +3 位作者 简永洲 张箭 丰土根 陈子昂 《隧道建设(中英文)》 CSCD 北大核心 2024年第3期484-495,共12页
为研究盾构掘进过程中掘进参数与地层情况的关联性,建立盾构掘进过程中的机-岩关系,依托南京地铁6号线某盾构施工区间数据进行复合地层下掘进参数的统计分析。首先,利用掘进参数与地层的相关性,采用人工蜂群算法优化的BP神经网络,建立... 为研究盾构掘进过程中掘进参数与地层情况的关联性,建立盾构掘进过程中的机-岩关系,依托南京地铁6号线某盾构施工区间数据进行复合地层下掘进参数的统计分析。首先,利用掘进参数与地层的相关性,采用人工蜂群算法优化的BP神经网络,建立可根据掘进参数识别开挖面地层并描述复合地层组合情况的ABC-BP神经网络模型;然后,针对盾构区间进行地层识别和区间内2种复合地层的复合比预测。结果表明:1)盾构掘进参数的波动范围与均值随开挖面所处地层变化,且依地层不同呈现一定规律性;2)地层类别预测结果表明,模型对上软下硬地层、中风化泥质砂岩、粉质黏土的识别召回率分别为94.1%、96.6%、96%,总体识别准确率为95%;3)针对复合比的预测结果表明,相较于其他机器学习模型,ABC-BP模型的平均绝对误差、均方根误差均减小且样本回归值提升,在预测精度和预测稳定性方面具有一定的优越性。 展开更多
关键词 地铁盾构隧道 地层识别 复合地层 掘进参数 神经网络 复合比 机器学习 abc算法
在线阅读 下载PDF
基于IABC-VFA融合的水下传感网络覆盖优化研究
16
作者 张伶俐 罗成名 +1 位作者 张代雨 张贝 《舰船科学技术》 北大核心 2024年第2期150-155,共6页
针对水下无线节点不均匀部署导致的覆盖率低的问题,将改进人工蜂群结合虚拟力算法(Improved Artificial Bee Colony-Virtual Force Algorithm, IABC-VFA)用于水下无线网络覆盖中,改进寻优精度不足以及易陷入局部优化的缺点。首先,在初... 针对水下无线节点不均匀部署导致的覆盖率低的问题,将改进人工蜂群结合虚拟力算法(Improved Artificial Bee Colony-Virtual Force Algorithm, IABC-VFA)用于水下无线网络覆盖中,改进寻优精度不足以及易陷入局部优化的缺点。首先,在初始阶段引入Tent混沌映射产生混沌序列以获得更均匀的搜索空间;其次,在跟随蜂阶段引入虚拟力算法对雇佣蜂阶段生成的解进行蜜源位置优化更新。最后,引入柯西-高斯变异策略变异当前最优解,使其跳出局部最优。仿真实验对比表明,本文提出的IABC-VFA算法比3D-IVFA和DABVF算法分别提高了1.30%和1.63%的覆盖率,节点利用率优于其他2种算法,可应用于三维水下无线传感器网络节点部署。 展开更多
关键词 水下传感网络 人工蜂群 虚拟力算法 覆盖性能
在线阅读 下载PDF
Logistic混沌映射与差分进化改进人工蜂群优化水下定位 被引量:1
17
作者 陈嘉兴 刘扬 +1 位作者 刘晓茜 刘志华 《工程科学与技术》 北大核心 2025年第1期57-67,共11页
水下节点定位时通常采用距离估算法,在节点之间利用点到点的距离来估计或基于角度估计来完成节点定位。然而,这种算法存在较大的定位误差。为了提升定位的精确度,引入了人工蜂群(ABC)优化算法,该算法通过将节点定位结果优化问题转化为... 水下节点定位时通常采用距离估算法,在节点之间利用点到点的距离来估计或基于角度估计来完成节点定位。然而,这种算法存在较大的定位误差。为了提升定位的精确度,引入了人工蜂群(ABC)优化算法,该算法通过将节点定位结果优化问题转化为对节点目标函数的优化问题,有效地提高了水下节点的定位精度。尽管如此,ABC算法在迭代过程中仍存在收敛速度慢、易陷入局部最优的问题。针对这些问题,提出了一种通过Logistic混沌映射与差分进化改进的人工蜂群优化水下定位算法(improved artificial bee colony optimization underwater localization algorithm by Logistic chaos mapping and differential evolution,LDIABC)。首先,在算法种群初始化阶段,引入了Logistic混沌映射,利用该映射函数产生的混沌序列代替随机数生成器,从而使种群在初始化分布时蜜源位置更均匀,并从理论上证明了Logistic混沌序列的互异性,从而避免由于种群分布过于密集导致算法在迭代过程中陷入局部最优;其次,提出了适应度方差这一标准来验证在算法迭代过程中未陷入局部最优,进一步证明其有效性;然后,在引领蜂搜索阶段,基于差分进化的变异策略,提出了权重因子改进引领蜂邻域搜索方式,提高了引领蜂的全局搜索效率,加快了算法的收敛速度。仿真实验表明,LDIABC算法能够有效避免传统ABC算法收敛速度慢和易陷入局部最优的问题。相较于Tent-IABC算法、ELOABC算法、CODEGWO算法以及SAPSO算法,LDIABC算法在收敛速度和节点定位成功率上均有显著提升,并且优化定位精度分别提升了6.36%、13.33%、14.16%和16.88%。这些结果证明LDIABC算法能够有效提升水下节点定位精度,具有良好的优化效果。 展开更多
关键词 人工蜂群优化 水下定位 LOGISTIC混沌映射 适应度方差 权重因子
在线阅读 下载PDF
基于粒子群和蜂群算法的无人机路径规划 被引量:2
18
作者 刘晓芬 吴传淑 +1 位作者 张紫瑞 陈珏先 《兵工自动化》 北大核心 2025年第4期107-112,共6页
针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径... 针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径,使得到的路径更加平滑,无人机机动转弯相对更少。结果表明:该研究提高了无人机飞行的安全性和高效性,便于无人机的飞行控制跟踪实现。 展开更多
关键词 路径规划 B样条 粒子群算法 人工蜂群算法 飞行控制
在线阅读 下载PDF
用于多无人机协同路径规划的改进黏菌蜂群算法
19
作者 熊慧 葛邦鲁 +1 位作者 刘近贞 王家兴 《浙江大学学报(工学版)》 北大核心 2025年第8期1698-1707,1717,共11页
针对多无人机(UAV)协同路径规划的问题,提出改进黏菌人工蜂群算法(ISMABC).建立路径规划代价模型,通过引入适应度函数和约束条件,将三维环境中的路径规划问题转化为优化问题,利用所提算法求解模型,获得最优路径.采用佳点集策略和非线性... 针对多无人机(UAV)协同路径规划的问题,提出改进黏菌人工蜂群算法(ISMABC).建立路径规划代价模型,通过引入适应度函数和约束条件,将三维环境中的路径规划问题转化为优化问题,利用所提算法求解模型,获得最优路径.采用佳点集策略和非线性收敛因子,对黏菌算法进行改进,在增加种群多样性的同时,提高算法的收敛速度.对全局最优个体采用精英反向学习策略,提高种群质量.在人工蜂群探索能力的基础上,引入全局最优位置引导,提高黏菌算法的开发能力.通过对14个测试函数和CEC2017测试函数集中部分函数的寻优对比分析可知,ISMABC算法的寻优能力和收敛速度都有了较大的提升.为了验证ISMABC算法的可行性,采用所提算法求解多无人机协同路径规划问题.通过对比分析可知,利用ISMABC算法能够为每架UAV规划出满足约束且代价最小的路径. 展开更多
关键词 多无人机 路径规划 黏菌算法 人工蜂群算法 佳点集 非线性收敛因子
在线阅读 下载PDF
多源数据融合的焊接质量监测技术
20
作者 张发平 孙昊 +1 位作者 魏剑峰 宋紫阳 《北京理工大学学报》 北大核心 2025年第5期471-481,共11页
针对焊接质量的图像信息检测方法难以发现隐性焊接缺陷的问题,提出基于多源数据融合的焊接隐性异常检测和识别方法,以期增加缺陷检测的种类和提高精度.首先,对采集的焊接过程中的声音、电压、光谱、温度等多维度信息进行特征值计算,并... 针对焊接质量的图像信息检测方法难以发现隐性焊接缺陷的问题,提出基于多源数据融合的焊接隐性异常检测和识别方法,以期增加缺陷检测的种类和提高精度.首先,对采集的焊接过程中的声音、电压、光谱、温度等多维度信息进行特征值计算,并将这些特征值与焊接的熔池图像特征值结合,构成焊接质量的原始特征空间;然后采用线性判别方法,降维形成焊接信息的低维特征空间;最后,使用孤立森林法筛选邻域搜索空间,并将该邻域搜索空间中的焊接数据点划分为多个重叠子集.采用局部离群因子法对新数据点在多个重叠子集中进行邻域搜索,对焊接过程进行异常检测,该方法充分考虑了焊接质量数据的全局特征并且计算复杂度大为降低.最后,采用基于人工蜂群算法优化的概率神经网络进行焊接质量数据的精确细分和异常的精准识别,该方法增强了全局搜索能力,同时避免陷入局部最优.试验验证结果显示所提方法都焊接异常的检测精度可达97.44%,对综合焊接异常的识别精度可达96.03%,证明了方法的有效性. 展开更多
关键词 隐性焊接异常 多源数据 局部离群因子 概率神经网络 线性判别方法 人工蜂群算法
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部