期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Hybrid artificial bee colony algorithm with variable neighborhood search and memory mechanism 被引量:59
1
作者 FAN Chengli FU Qiang +1 位作者 LONG Guangzheng XING Qinghua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期405-414,共10页
Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie... Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC. 展开更多
关键词 artificial bee colony(abc) hybrid artificial bee colony(Habc) variable neighborhood search factor memory mechanism
在线阅读 下载PDF
Improved artificial bee colony algorithm with mutual learning 被引量:7
2
作者 Yu Liu Xiaoxi Ling +1 位作者 Yu Liang Guanghao Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期265-275,共11页
The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs ... The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments. 展开更多
关键词 artificial bee colony (abc algorithm numerical func- tion optimization swarm intelligence mutual learning.
在线阅读 下载PDF
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm 被引量:8
3
作者 Haidong Xu Mingyan Jiang Kun Xu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期388-396,共9页
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble... The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments. 展开更多
关键词 artificial bee colony(abc) algorithm Archimedean copula estimation of distribution algorithm(ACEDA) ACEDA based on artificial be
在线阅读 下载PDF
Artificial bee colony algorithm with comprehensive search mechanism for numerical optimization 被引量:5
4
作者 Mudong Li Hui Zhao +1 位作者 Xingwei Weng Hanqiao Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期603-617,共15页
The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is... The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms. 展开更多
关键词 artificial bee colony (abc function optimization search strategy population initialization Wilcoxon signed ranks test.
在线阅读 下载PDF
S-box:six-dimensional compound hyperchaotic map and artificial bee colony algorithm 被引量:1
5
作者 Ye Tian Zhimao Lu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期232-241,共10页
Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes th... Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria. 展开更多
关键词 substitution boxes(S-boxes) multiple cryptographic criteria six-dimensional compound hyperchaotic map artificial bee colony algorithm(abc).
在线阅读 下载PDF
多源数据融合的焊接质量监测技术
6
作者 张发平 孙昊 +1 位作者 魏剑峰 宋紫阳 《北京理工大学学报》 北大核心 2025年第5期471-481,共11页
针对焊接质量的图像信息检测方法难以发现隐性焊接缺陷的问题,提出基于多源数据融合的焊接隐性异常检测和识别方法,以期增加缺陷检测的种类和提高精度.首先,对采集的焊接过程中的声音、电压、光谱、温度等多维度信息进行特征值计算,并... 针对焊接质量的图像信息检测方法难以发现隐性焊接缺陷的问题,提出基于多源数据融合的焊接隐性异常检测和识别方法,以期增加缺陷检测的种类和提高精度.首先,对采集的焊接过程中的声音、电压、光谱、温度等多维度信息进行特征值计算,并将这些特征值与焊接的熔池图像特征值结合,构成焊接质量的原始特征空间;然后采用线性判别方法,降维形成焊接信息的低维特征空间;最后,使用孤立森林法筛选邻域搜索空间,并将该邻域搜索空间中的焊接数据点划分为多个重叠子集.采用局部离群因子法对新数据点在多个重叠子集中进行邻域搜索,对焊接过程进行异常检测,该方法充分考虑了焊接质量数据的全局特征并且计算复杂度大为降低.最后,采用基于人工蜂群算法优化的概率神经网络进行焊接质量数据的精确细分和异常的精准识别,该方法增强了全局搜索能力,同时避免陷入局部最优.试验验证结果显示所提方法都焊接异常的检测精度可达97.44%,对综合焊接异常的识别精度可达96.03%,证明了方法的有效性. 展开更多
关键词 隐性焊接异常 多源数据 局部离群因子 概率神经网络 线性判别方法 人工蜂群算法
在线阅读 下载PDF
基于ABC-SVM和PSO-RF的光伏微电网日发电功率组合预测方法研究 被引量:26
7
作者 王小杨 罗多 +2 位作者 孙韵琳 李超 李进 《太阳能学报》 EI CAS CSCD 北大核心 2020年第3期177-183,共7页
综合考虑气象因素,使用ABC-SVM方法,对历史的气象数据和光伏出力数据进行训练,依据发电量情况将气象数据分为4类;之后在4类气象情况下各选取上万条数据,使用PSO-RF模型分别训练每组数据,得到4个带不同参数的模型;最后根据每天的气象情... 综合考虑气象因素,使用ABC-SVM方法,对历史的气象数据和光伏出力数据进行训练,依据发电量情况将气象数据分为4类;之后在4类气象情况下各选取上万条数据,使用PSO-RF模型分别训练每组数据,得到4个带不同参数的模型;最后根据每天的气象情况运行不同的模型。验证本组合方法之后发现,通过气象分类后得到的模型,可大幅提高光伏发电量预测的效果。 展开更多
关键词 光伏发电量预测 支持向量机 粒子群优化 人工蜂群 随机森林 微电网
在线阅读 下载PDF
PSO和ABC的混合优化算法 被引量:12
8
作者 刘俊芳 张雪英 宁爱平 《计算机工程与应用》 CSCD 北大核心 2011年第35期32-34,44,共4页
通过将粒子群优化(Particle Swarm Optimization,PSO)算法与人工蜂群(Artificial Bee Colony,ABC)算法相结合,提出一种ABC-PSO并行混合优化算法。在每次迭代中,将种群分为两个子种群,一个子种群使用PSO算法,另一个子种群使用ABC算法,两... 通过将粒子群优化(Particle Swarm Optimization,PSO)算法与人工蜂群(Artificial Bee Colony,ABC)算法相结合,提出一种ABC-PSO并行混合优化算法。在每次迭代中,将种群分为两个子种群,一个子种群使用PSO算法,另一个子种群使用ABC算法,两个算法寻优后进行比较,选出最优适应值。通过混合算法对4个标准函数进行测试,并与标准PSO算法进行比较,结果表明混合算法具有更好的优化性能。 展开更多
关键词 粒子群优化算法 人工蜂群算法 abc.PSO混合算法 群体智能
在线阅读 下载PDF
Hadoop平台下粒子滤波结合改进ABC算法的IoT大数据特征选择方法 被引量:12
9
作者 吴颖 李晓玲 唐晶磊 《计算机应用研究》 CSCD 北大核心 2019年第11期3297-3301,共5页
针对现有物联网大数据特征选择算法计算效率低下、可扩展性不高的问题,提出一种基于改进人工蜂群(ABC)选择特征的系统架构,该架构包含四层体系,可以高效地聚合有效数据,剔除不需要的数据。整个系统是基于Hadoop平台、MapReduce以及改进... 针对现有物联网大数据特征选择算法计算效率低下、可扩展性不高的问题,提出一种基于改进人工蜂群(ABC)选择特征的系统架构,该架构包含四层体系,可以高效地聚合有效数据,剔除不需要的数据。整个系统是基于Hadoop平台、MapReduce以及改进ABC算法的。改进ABC算法用于选择特征,而MapReduce则由并行算法支持,该算法可高效处理大数据集。该系统使用MapReduce工具实现,并利用粒子滤波来消除噪声。将提出的算法与同类方法进行比较,并通过使用十个不同的数据集对效率、准确性和吞吐量进行评估。结果表明,相比其他几种较新的算法,提出的算法在选择特征时更具可扩展性和高效性。 展开更多
关键词 物联网 大数据 人工蜂群算法 特征选择 粒子滤波 小生境技术
在线阅读 下载PDF
混合排名映射概率和混沌搜索的ABC算法 被引量:6
10
作者 张新明 魏峰 +1 位作者 牛丽平 王鲜芳 《计算机科学》 CSCD 北大核心 2014年第2期102-106,144,共6页
针对由于人工蜂群算法(Artificial Bee Colony algorithm,ABC)采用直接映射概率选择食物源而引起收敛速度慢、陷入局部最优等问题,提出一种混合排名映射概率和混沌搜索的人工蜂群算法((Artificial Bee Colony algorithm based on Hybrid... 针对由于人工蜂群算法(Artificial Bee Colony algorithm,ABC)采用直接映射概率选择食物源而引起收敛速度慢、陷入局部最优等问题,提出一种混合排名映射概率和混沌搜索的人工蜂群算法((Artificial Bee Colony algorithm based on Hybrid rank mapping probability and Chaotic search,ABC-HC))。首先,利用目标函数值的排名来获取选择食物源的排名映射概率,并提出计算排名映射概率的两种方法;然后,在观察蜂阶段,融合这两种计算概率的方法,即不同的搜索阶段采用不同的排名映射方法计算食物源选择概率,构造基于混合排名映射概率的人工蜂群算法,以便能够维持种群的多样性避免陷于局部最优;最后,在侦查蜂阶段,使用混沌搜索替代随机搜索以便进一步提高收敛速度,最终获得较好的全局最优解。对10个标准测试函数进行仿真,结果表明,ABC-HC算法不仅提高了收敛速度,而且更能跳出局部最优,有效地找到全局最优解,优于标准的ABC算法和进化算法。 展开更多
关键词 人工蜂群算法 排名映射概率 直接映射概率 混沌搜索 随机搜索
在线阅读 下载PDF
基于PSO-ABC的混合算法求解复杂约束优化问题 被引量:4
11
作者 王珂珂 吕强 +1 位作者 赵汗青 张蔚 《系统工程与电子技术》 EI CSCD 北大核心 2012年第6期1193-1199,共7页
为了改善粒子群优化(particle swarm optimization,PSO)算法在处理复杂约束优化问题时的求解效果,提出了一种基于粒子群和人工蜂群的混合优化(particle swarm optimization-artificial bee colony,PSO-ABC)算法。在采用可行性规则进行... 为了改善粒子群优化(particle swarm optimization,PSO)算法在处理复杂约束优化问题时的求解效果,提出了一种基于粒子群和人工蜂群的混合优化(particle swarm optimization-artificial bee colony,PSO-ABC)算法。在采用可行性规则进行约束处理的基础上,将PSO种群分为可行子群和不可行子群,并在ABC算法从粒子种群中选择蜜源时,保留部分较优的可行解信息和约束违反程度较低的不可行解信息,弥补了联赛选择算子在处理最优点位于约束边界附近的问题时存在的不足。同时,使用禁忌表存储局部极值,减小了PSO算法陷入局部最优的危险。针对4个标准测试实例的实验结果表明,该算法能够寻得更优的约束最优化解,且稳健性更强。 展开更多
关键词 复杂约束优化 可行性规则 粒子群优化 人工蜂群 禁忌表
在线阅读 下载PDF
融合多源数据的ABC-SVM快速路交通事件检测 被引量:7
12
作者 丁宏飞 秦政 +1 位作者 李演洪 刘博 《中国安全科学学报》 CAS CSCD 北大核心 2015年第6期162-166,共5页
为保证城市快速路段的畅通,建立一种基于蜂群算法-支持向量机(ABC-SVM)融合多源交通数据的城市快速路交通事件检测方法。首先通过分析路段实际情况,选取不同检测器的数据作为事件检测模型的输入值;然后利用蜂群算法(ABC)对支持向量机(S... 为保证城市快速路段的畅通,建立一种基于蜂群算法-支持向量机(ABC-SVM)融合多源交通数据的城市快速路交通事件检测方法。首先通过分析路段实际情况,选取不同检测器的数据作为事件检测模型的输入值;然后利用蜂群算法(ABC)对支持向量机(SVM)分类模型中的参数进行优化,获得最优的交通事件检测模型,模型的输出结果为检测路段是否发生交通事件;最后结合成都市三环城市快速路路段上采集到的多源交通数据进行实例验证。结果表明,利用ABC-SVM方法进行事件检测的效果优于BP神经网络的方法。 展开更多
关键词 城市快速路 交通事件检测 多源交通数据 蜂群算法(abc) 支持向量机(SVM)
在线阅读 下载PDF
云计算环境下基于ABC-QPSO算法的资源调度模型 被引量:6
13
作者 温聪源 徐守萍 曾致远 《计算机应用与软件》 CSCD 2015年第5期30-32,64,共4页
为了提高云计算资源的利用率,保证节点负载均衡,提出一种人工蜂群算法和量子粒子群算法相融合的云计算资源调度模型(ABC-QPSO)。首先将人工蜂群算法的搜索算子作为变异算子引入到量子粒子群算法中,以解决量子粒子群算法早熟收敛缺陷,然... 为了提高云计算资源的利用率,保证节点负载均衡,提出一种人工蜂群算法和量子粒子群算法相融合的云计算资源调度模型(ABC-QPSO)。首先将人工蜂群算法的搜索算子作为变异算子引入到量子粒子群算法中,以解决量子粒子群算法早熟收敛缺陷,然后以任务完成时间最短作为量子粒子群的适应度函数对云计算资源调度进行优化,最后在Cloud Sim平台上对ABC-QPSO的性能进行测试。结果表明,ABC-QPSO算法不仅克服了QPSO算法的不足,而且有效缩短了任务的完成时间,提高了云计算资源利用率,适合于进行大规模任务的云计算资源调度。 展开更多
关键词 云计算 资源调度 人工蜂群算法 量子粒子群算法 任务分配
在线阅读 下载PDF
求解工程约束优化问题的PSO-ABC混合算法 被引量:3
14
作者 王珂珂 吕强 +1 位作者 赵汗青 白帆 《计算机应用研究》 CSCD 北大核心 2012年第4期1230-1233,1266,共5页
针对包含约束条件的工程优化问题,提出了基于人工蜂群的粒子群优化PSO-ABC算法。将PSO中较优的粒子作为ABC算法的蜜源,并使用禁忌表存储其局部极值,克服粒子群优化算法易陷入局部最优的缺陷。采用可行性规则进行约束处理,将粒子种群分... 针对包含约束条件的工程优化问题,提出了基于人工蜂群的粒子群优化PSO-ABC算法。将PSO中较优的粒子作为ABC算法的蜜源,并使用禁忌表存储其局部极值,克服粒子群优化算法易陷入局部最优的缺陷。采用可行性规则进行约束处理,将粒子种群分为可行子群和不可行子群,并在ABC算法产生蜜源的过程中保留部分较优的可行解和不可行解的信息,弥补了可行性规则处理最优点位于约束边界附近的问题时存在的不足。四个典型工程优化设计的实验结果表明,该算法能够寻得更优的约束最优化解,且稳健性更强。 展开更多
关键词 粒子群优化 人工蜂群 工程约束优化 可行性规则 禁忌表
在线阅读 下载PDF
基于IABC-LSSVM的瓦斯涌出量预测模型研究 被引量:6
15
作者 王磊 刘雨 +1 位作者 刘志中 齐俊艳 《传感器与微系统》 CSCD 北大核心 2022年第2期34-38,共5页
为了更好地对矿井回采工作面瓦斯的涌出量做出准确的预测,提出了将改进的人工蜂群与最小二乘支持向量机(IABC-LSSVM)相耦合的瓦斯涌出量预测方法。首先,在人工蜂群(ABC)算法中引入混沌序列来确定更优的初始蜜源,并结合自适应因子更新搜... 为了更好地对矿井回采工作面瓦斯的涌出量做出准确的预测,提出了将改进的人工蜂群与最小二乘支持向量机(IABC-LSSVM)相耦合的瓦斯涌出量预测方法。首先,在人工蜂群(ABC)算法中引入混沌序列来确定更优的初始蜜源,并结合自适应因子更新搜索步长,从而避免陷入局部最优的情况;然后,利用改进后的人工蜂群算法对最小二乘机的核宽度和正则化参数进行寻优;最后,使用优化后的参数进行定量分析,在归一化处理后建立瓦斯涌出量的非线性预测模型。结果表明,IABC-LSSVM模型与其他三种改进预测模型相比具有更高的准确率,能够为复杂因素下煤矿工作面瓦斯涌出的预测提供可靠的理论依据。 展开更多
关键词 瓦斯涌出量 人工蜂群算法 预测模型 最小二乘支持向量机 混沌序列
在线阅读 下载PDF
基于神经网络与改进ABC算法的瓦斯预测研究 被引量:2
16
作者 付华 荆晓亮 杨義葵 《传感器与微系统》 CSCD 北大核心 2011年第4期79-81,92,共4页
人工蜜蜂群(ABC)优化算法具有较强的全局搜索能力。在标准算法的基础上,参考粒子群优化算法,加入当前全局最优解对算法的有益引导;当观察蜂在引导蜂所在食物源附近搜索时,引入混沌搜索机制,改善局部搜索性能。利用改进的ABC算法,以网络... 人工蜜蜂群(ABC)优化算法具有较强的全局搜索能力。在标准算法的基础上,参考粒子群优化算法,加入当前全局最优解对算法的有益引导;当观察蜂在引导蜂所在食物源附近搜索时,引入混沌搜索机制,改善局部搜索性能。利用改进的ABC算法,以网络训练的最小方差F为优化指标,优化神经网络的连接权值。优化后的神经网络用于瓦斯预测,取得了良好的效果。 展开更多
关键词 人工蜜蜂群优化算法 神经网络 混沌搜索 瓦斯预测
在线阅读 下载PDF
基于模糊ABC算法的空间域SAR图像阈值分割 被引量:3
17
作者 柳新妮 马苗 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期16-21,共6页
为提高SAR(合成孔径雷达)图像分割速度,提出一种基于模糊ABC(人工蜂群)算法的空间域SAR图像阈值分割方法.该方法利用灰度形态学算子抑制图像噪声,根据抑噪图像的直方图特征缩小阈值范围,同时引入模糊隶属度函数优化蜂的运动轨迹,快速搜... 为提高SAR(合成孔径雷达)图像分割速度,提出一种基于模糊ABC(人工蜂群)算法的空间域SAR图像阈值分割方法.该方法利用灰度形态学算子抑制图像噪声,根据抑噪图像的直方图特征缩小阈值范围,同时引入模糊隶属度函数优化蜂的运动轨迹,快速搜索最优分割阈值.实验结果显示,该方法不仅能有效抑制可见光图像和真实SAR图像中的斑点噪声,而且分割速度与分割质量明显优于基于遗传算法和人工鱼群算法的分割方法. 展开更多
关键词 合成孔径雷达图像 人工蜂群算法 直方图特征 阈值分割 交叉熵
在线阅读 下载PDF
ABC算法在非线性系统辨识与控制中的应用 被引量:2
18
作者 周海峰 王荣杰 《中国机械工程》 EI CAS CSCD 北大核心 2012年第12期1446-1451,共6页
针对非线性系统辨识和控制器的设计,提出一种混沌映射产生初值的人工蜂群优化算法,并将该算法应用于非线性系统中的参数辨识和PID控制器的设计。参数辨识的仿真结果表明,基于混沌映射理论的人工蜂群优化算法比其他传统的算法具有更好的... 针对非线性系统辨识和控制器的设计,提出一种混沌映射产生初值的人工蜂群优化算法,并将该算法应用于非线性系统中的参数辨识和PID控制器的设计。参数辨识的仿真结果表明,基于混沌映射理论的人工蜂群优化算法比其他传统的算法具有更好的收敛特性和辨识性能;自动电压调节系统的仿真结果表明,基于混沌人工蜂群优化的PID控制自动电压调节系统是可行性的,且具有良好的动态调节性能。 展开更多
关键词 混沌映射 非线性系统辨识 人工蜂群优化算法 PID控制器 自动电压调节系统
在线阅读 下载PDF
基于ABC-PSO的ε-SVM在甲烷测量中的应用 被引量:2
19
作者 鲍立 陈红岩 郭晶晶 《传感器与微系统》 CSCD 2017年第7期154-156,160,共4页
针对红外甲烷传感器在工业现场测量时易受到温度、湿度以及类似气体等非目标变量的影响,提出了一种基于人工蜂群和粒子群混合优化算法(ABC-PSO)的支持向量机模型(ABC-PSO-ε-SVM)对其进行校正。将ABC算法与PSO算法并行组合构成混合优化... 针对红外甲烷传感器在工业现场测量时易受到温度、湿度以及类似气体等非目标变量的影响,提出了一种基于人工蜂群和粒子群混合优化算法(ABC-PSO)的支持向量机模型(ABC-PSO-ε-SVM)对其进行校正。将ABC算法与PSO算法并行组合构成混合优化算法,能够感知非目标变量的变化,快速、准确地搜索到SVM参数。实验中,采用红外甲烷传感器对0%~5.05%浓度的16组标准甲烷气体进行测量,将其中11组数据作为训练集,5组数据作为测试集,建立ε-SVM回归校正模型并进行预测。结果表明:模型的回归拟合效果好,预测精度比单一优化算法的SVM模型高。 展开更多
关键词 红外甲烷传感器 人工蜂群算法 粒子群算法 混合优化算法 支持向量机
在线阅读 下载PDF
基于适应度分割机制和自适应搜索策略的人工蜂群算法
20
作者 曹阳 沈世杰 《计算机应用》 北大核心 2025年第S1期170-176,共7页
针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地... 针对人工蜂群(ABC)算法开发能力弱的缺点,提出一种基于适应度分割机制和自适应搜索策略的ABC算法(FSABC)。首先,在雇佣蜂和跟随蜂阶段开始前,根据适应度值将种群划分为高适应度子种群和低适应度子种群,并通过动态调整子种群大小,更好地平衡算法的开发性和探索性,并更合理地分配搜索资源;其次,对跟随蜂中的高适应度子种群提出一个策略池和一种新的自适应搜索方式,以避免算法陷入局部最优解;再次,为了加强算法的开发能力,根据高适应度子种群的特点,设计一个新的搜索策略和一个策略池,以发挥该子种群的优势,从而提高算法的性能;最后,对于复杂的多峰问题,在适应度景观中存在许多局部最优解,其中一些可能接近全局最优解,因此,搜索一个好的解的邻域将有助于找到更好的解,甚至可能找到全局最优解,鉴于此,使用一个邻域搜索算子加强算法的开发能力。基于22个经典测试函数进行比较实验的结果表明,在30维和50维问题上,与ABCLGII(ABC algorithm with Local and Global Information Interaction)相比,所提算法的Friedman检验的秩次等级分别提高了30.8%和11.7%,可见,所提算法的性能求解精度更优,并能有效处理全局数值优化问题。 展开更多
关键词 适应度分割 人工蜂群算法 自适应搜索 邻域搜索算子 动态子种群调整
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部