Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie...Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC.展开更多
A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrich...A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm.展开更多
The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs ...The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments.展开更多
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble...The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.展开更多
The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is...The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.展开更多
Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk...Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk factor in drawing up an efficient frontier and the optimal portfolio. Since semi-variance offers a better estimation of the actual risk portfolio, it was used as a measure to approximate the risk of investment in this work. The optimal portfolio selection is one of the non-deterministic polynomial(NP)-hard problems that have not been presented in an exact algorithm, which can solve this problem in a polynomial time. Meta-heuristic algorithms are usually used to solve such problems. A novel hybrid harmony search and artificial bee colony algorithm and its application were introduced in order to draw efficient frontier portfolios. Computational results show that this algorithm is more successful than the harmony search method and genetic algorithm. In addition, it is more accurate in finding optimal solutions at all levels of risk and return.展开更多
An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti...An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes th...Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria.展开更多
基金supported by the National Natural Science Foundation of China(7177121671701209)
文摘Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC.
基金Projects(6177021519,61503373)supported by National Natural Science Foundation of ChinaProject(N161705001)supported by Fundamental Research Funds for the Central University,China
文摘A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (60803074)the Fundamental Research Funds for the Central Universities (DUT10JR06)
文摘The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments.
基金supported by the National Natural Science Foundation of China(61201370)the Special Funding Project for Independent Innovation Achievement Transform of Shandong Province(2012CX30202)the Natural Science Foundation of Shandong Province(ZR2014FM039)
文摘The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
基金supported by the Aviation Science Foundation of China(20105196016)the Postdoctoral Science Foundation of China(2012M521807)
文摘The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.
文摘Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk factor in drawing up an efficient frontier and the optimal portfolio. Since semi-variance offers a better estimation of the actual risk portfolio, it was used as a measure to approximate the risk of investment in this work. The optimal portfolio selection is one of the non-deterministic polynomial(NP)-hard problems that have not been presented in an exact algorithm, which can solve this problem in a polynomial time. Meta-heuristic algorithms are usually used to solve such problems. A novel hybrid harmony search and artificial bee colony algorithm and its application were introduced in order to draw efficient frontier portfolios. Computational results show that this algorithm is more successful than the harmony search method and genetic algorithm. In addition, it is more accurate in finding optimal solutions at all levels of risk and return.
基金Projects(61174040,61104178,61374136) supported by the National Natural Science Foundation of ChinaProject(12JC1403400) supported by Shanghai Commission of Science and Technology,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value.
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
基金Supported by National Natural Science Foundation of China (61273260), Specialized Research Fund for the Doctoral Program of Higher Education of China (20121333120010), Natural Scientific Research Foundation of the Higher Education Institutions of Hebei Province (2010t65), the Major Program of the National Natural Science Foundation of China (61290322), Foundation of Key Labora- tory of System Control and Information Processing, Ministry of Education (SCIP2012008), and Science and Technology Research and Development Plan of Qinhuangdao City (2012021A041)
基金supported by the National Natural Science Foundation of China(6060309260975042)
文摘Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria.