期刊文献+
共找到1,034篇文章
< 1 2 52 >
每页显示 20 50 100
Hybrid artificial bee colony algorithm with variable neighborhood search and memory mechanism 被引量:59
1
作者 FAN Chengli FU Qiang +1 位作者 LONG Guangzheng XING Qinghua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期405-414,共10页
Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie... Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC. 展开更多
关键词 artificial bee colony(ABC) hybrid artificial bee colony(HABC) variable neighborhood search factor memory mechanism
在线阅读 下载PDF
An enhanced artificial bee colony optimizer and its application to multi-level threshold image segmentation 被引量:13
2
作者 GAO Yang LI Xu +1 位作者 DONG Ming LI He-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期107-120,共14页
A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrich... A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm. 展开更多
关键词 artificial bee colony local search swarm intelligence image segmentation
在线阅读 下载PDF
Improved artificial bee colony algorithm with mutual learning 被引量:7
3
作者 Yu Liu Xiaoxi Ling +1 位作者 Yu Liang Guanghao Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期265-275,共11页
The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs ... The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments. 展开更多
关键词 artificial bee colony (ABC) algorithm numerical func- tion optimization swarm intelligence mutual learning.
在线阅读 下载PDF
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm 被引量:8
4
作者 Haidong Xu Mingyan Jiang Kun Xu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期388-396,共9页
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble... The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments. 展开更多
关键词 artificial bee colony(ABC) algorithm Archimedean copula estimation of distribution algorithm(ACEDA) ACEDA based on artificial be
在线阅读 下载PDF
Artificial bee colony algorithm with comprehensive search mechanism for numerical optimization 被引量:5
5
作者 Mudong Li Hui Zhao +1 位作者 Xingwei Weng Hanqiao Huang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期603-617,共15页
The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is... The artificial bee colony (ABC) algorithm is a sim- ple and effective global optimization algorithm which has been successfully applied in practical optimization problems of various fields. However, the algorithm is still insufficient in balancing ex- ploration and exploitation. To solve this problem, we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies. Firstly, the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees, which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability P,. Secondly, in order to improve the search accuracy, we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC. Thirdly, the self- adaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to en- hance the diversity of the population. In addition, to improve the quality of the initial population, we introduce the chaotic opposition- based learning method for initialization. The experimental results and Wilcoxon signed ranks test based on 27 benchmark func- tions show that the proposed algorithm, especially for solving high dimensional and complex function optimization problems, has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms. 展开更多
关键词 artificial bee colony (ABC) function optimization search strategy population initialization Wilcoxon signed ranks test.
在线阅读 下载PDF
A novel hybrid algorithm based on a harmony search and artificial bee colony for solving a portfolio optimization problem using a mean-semi variance approach 被引量:4
6
作者 Seyed Mohammad Seyedhosseini Mohammad Javad Esfahani Mehdi Ghaffari 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期181-188,共8页
Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk... Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk factor in drawing up an efficient frontier and the optimal portfolio. Since semi-variance offers a better estimation of the actual risk portfolio, it was used as a measure to approximate the risk of investment in this work. The optimal portfolio selection is one of the non-deterministic polynomial(NP)-hard problems that have not been presented in an exact algorithm, which can solve this problem in a polynomial time. Meta-heuristic algorithms are usually used to solve such problems. A novel hybrid harmony search and artificial bee colony algorithm and its application were introduced in order to draw efficient frontier portfolios. Computational results show that this algorithm is more successful than the harmony search method and genetic algorithm. In addition, it is more accurate in finding optimal solutions at all levels of risk and return. 展开更多
关键词 portfolio optimizations mean-variance model mean semi-variance model harmony search and artificial bee colony efficient frontier
在线阅读 下载PDF
An effective discrete artificial bee colony algorithm for flow shop scheduling problem with intermediate buffers 被引量:3
7
作者 张素君 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3471-3484,共14页
An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effecti... An effective discrete artificial bee colony(DABC) algorithm is proposed for the flow shop scheduling problem with intermediate buffers(IBFSP) in order to minimize the maximum completion time(i.e makespan). The effective combination of the insertion and swap operator is applied to producing neighborhood individual at the employed bee phase. The tournament selection is adopted to avoid falling into local optima, while, the optimized insert operator embeds in onlooker bee phase for further searching the neighborhood solution to enhance the local search ability of algorithm. The tournament selection with size 2 is again applied and a better selected solution will be performed destruction and construction of iterated greedy(IG) algorithm, and then the result replaces the worse one. Simulation results show that our algorithm has a better performance compared with the HDDE and CHS which were proposed recently. It provides the better known solutions for the makespan criterion to flow shop scheduling problem with limited buffers for the Car benchmark by Carlier and Rec benchmark by Reeves. The convergence curves show that the algorithm not only has faster convergence speed but also has better convergence value. 展开更多
关键词 discrete artificial bee colony algorithm flow shop scheduling problem with intermediate buffers destruction and construction tournament selection
在线阅读 下载PDF
Hybridizing artificial bee colony with biogeography-based optimization for constrained mechanical design problems 被引量:2
8
作者 蔡绍洪 龙文 焦建军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2250-2259,共10页
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c... A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches. 展开更多
关键词 artificial bee colony biogeography-based optimization constrained optimization mechanical design problem
在线阅读 下载PDF
Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm 被引量:15
9
作者 ZHANG Dong-Li TANG Ying-Gan GUAN Xin-Ping 《自动化学报》 EI CSCD 北大核心 2014年第5期973-980,共8页
关键词 PID控制器 优化设计 VR系统 群算法 分数阶 工蜂 自动电压调节器 搜索范围
在线阅读 下载PDF
S-box:six-dimensional compound hyperchaotic map and artificial bee colony algorithm 被引量:1
10
作者 Ye Tian Zhimao Lu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期232-241,共10页
Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes th... Being as unique nonlinear components of block ciphers,substitution boxes(S-boxes) directly affect the security of the cryptographic systems.It is important and difficult to design cryptographically strong S-boxes that simultaneously meet with multiple cryptographic criteria such as bijection,non-linearity,strict avalanche criterion(SAC),bits independence criterion(BIC),differential probability(DP) and linear probability(LP).To deal with this problem,a chaotic S-box based on the artificial bee colony algorithm(CSABC) is designed.It uses the S-boxes generated by the six-dimensional compound hyperchaotic map as the initial individuals and employs ABC to improve their performance.In addition,it considers the nonlinearity and differential uniformity as the fitness functions.A series of experiments have been conducted to compare multiple cryptographic criteria of this algorithm with other algorithms.Simulation results show that the new algorithm has cryptographically strong S-box while meeting multiple cryptographic criteria. 展开更多
关键词 substitution boxes(S-boxes) multiple cryptographic criteria six-dimensional compound hyperchaotic map artificial bee colony algorithm(ABC).
在线阅读 下载PDF
Logistic混沌映射与差分进化改进人工蜂群优化水下定位 被引量:1
11
作者 陈嘉兴 刘扬 +1 位作者 刘晓茜 刘志华 《工程科学与技术》 北大核心 2025年第1期57-67,共11页
水下节点定位时通常采用距离估算法,在节点之间利用点到点的距离来估计或基于角度估计来完成节点定位。然而,这种算法存在较大的定位误差。为了提升定位的精确度,引入了人工蜂群(ABC)优化算法,该算法通过将节点定位结果优化问题转化为... 水下节点定位时通常采用距离估算法,在节点之间利用点到点的距离来估计或基于角度估计来完成节点定位。然而,这种算法存在较大的定位误差。为了提升定位的精确度,引入了人工蜂群(ABC)优化算法,该算法通过将节点定位结果优化问题转化为对节点目标函数的优化问题,有效地提高了水下节点的定位精度。尽管如此,ABC算法在迭代过程中仍存在收敛速度慢、易陷入局部最优的问题。针对这些问题,提出了一种通过Logistic混沌映射与差分进化改进的人工蜂群优化水下定位算法(improved artificial bee colony optimization underwater localization algorithm by Logistic chaos mapping and differential evolution,LDIABC)。首先,在算法种群初始化阶段,引入了Logistic混沌映射,利用该映射函数产生的混沌序列代替随机数生成器,从而使种群在初始化分布时蜜源位置更均匀,并从理论上证明了Logistic混沌序列的互异性,从而避免由于种群分布过于密集导致算法在迭代过程中陷入局部最优;其次,提出了适应度方差这一标准来验证在算法迭代过程中未陷入局部最优,进一步证明其有效性;然后,在引领蜂搜索阶段,基于差分进化的变异策略,提出了权重因子改进引领蜂邻域搜索方式,提高了引领蜂的全局搜索效率,加快了算法的收敛速度。仿真实验表明,LDIABC算法能够有效避免传统ABC算法收敛速度慢和易陷入局部最优的问题。相较于Tent-IABC算法、ELOABC算法、CODEGWO算法以及SAPSO算法,LDIABC算法在收敛速度和节点定位成功率上均有显著提升,并且优化定位精度分别提升了6.36%、13.33%、14.16%和16.88%。这些结果证明LDIABC算法能够有效提升水下节点定位精度,具有良好的优化效果。 展开更多
关键词 人工蜂群优化 水下定位 LOGISTIC混沌映射 适应度方差 权重因子
在线阅读 下载PDF
基于粒子群和蜂群算法的无人机路径规划 被引量:2
12
作者 刘晓芬 吴传淑 +1 位作者 张紫瑞 陈珏先 《兵工自动化》 北大核心 2025年第4期107-112,共6页
针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径... 针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径,使得到的路径更加平滑,无人机机动转弯相对更少。结果表明:该研究提高了无人机飞行的安全性和高效性,便于无人机的飞行控制跟踪实现。 展开更多
关键词 路径规划 B样条 粒子群算法 人工蜂群算法 飞行控制
在线阅读 下载PDF
用于多无人机协同路径规划的改进黏菌蜂群算法
13
作者 熊慧 葛邦鲁 +1 位作者 刘近贞 王家兴 《浙江大学学报(工学版)》 北大核心 2025年第8期1698-1707,1717,共11页
针对多无人机(UAV)协同路径规划的问题,提出改进黏菌人工蜂群算法(ISMABC).建立路径规划代价模型,通过引入适应度函数和约束条件,将三维环境中的路径规划问题转化为优化问题,利用所提算法求解模型,获得最优路径.采用佳点集策略和非线性... 针对多无人机(UAV)协同路径规划的问题,提出改进黏菌人工蜂群算法(ISMABC).建立路径规划代价模型,通过引入适应度函数和约束条件,将三维环境中的路径规划问题转化为优化问题,利用所提算法求解模型,获得最优路径.采用佳点集策略和非线性收敛因子,对黏菌算法进行改进,在增加种群多样性的同时,提高算法的收敛速度.对全局最优个体采用精英反向学习策略,提高种群质量.在人工蜂群探索能力的基础上,引入全局最优位置引导,提高黏菌算法的开发能力.通过对14个测试函数和CEC2017测试函数集中部分函数的寻优对比分析可知,ISMABC算法的寻优能力和收敛速度都有了较大的提升.为了验证ISMABC算法的可行性,采用所提算法求解多无人机协同路径规划问题.通过对比分析可知,利用ISMABC算法能够为每架UAV规划出满足约束且代价最小的路径. 展开更多
关键词 多无人机 路径规划 黏菌算法 人工蜂群算法 佳点集 非线性收敛因子
在线阅读 下载PDF
基于元学习和集成学习的高熵合金相预测算法
14
作者 侯帅 李玉娇 +2 位作者 白梅娟 孙梦玥 石修志 《计算机应用与软件》 北大核心 2025年第6期302-310,共9页
准确预测高熵合金的相,有利于减少材料设计的工作量和研发周期,并提高材料的性能,因此提出一种基于元学习和集成学习的高熵合金相预测算法。该算法由关系映射模型和优化模型两个部分组成。前者建立了结合材料知识的元特征与选择性集成... 准确预测高熵合金的相,有利于减少材料设计的工作量和研发周期,并提高材料的性能,因此提出一种基于元学习和集成学习的高熵合金相预测算法。该算法由关系映射模型和优化模型两个部分组成。前者建立了结合材料知识的元特征与选择性集成学习性能的映射关系,来推荐合适的集成算法;后者采用基于单体精度约束的人工蜂群算法来提高集成学习的准确率。实验结果表明,该算法的预测性能要优于其他选择性集成学习算法。 展开更多
关键词 高熵合金 相预测 元学习 集成学习 人工蜂群算法
在线阅读 下载PDF
基于改进人工蜂群算法的矿井风量按需调控智能决策
15
作者 张浪 雷爽 +1 位作者 李伟 刘彦青 《工矿自动化》 北大核心 2025年第3期131-137,共7页
针对现有元启发式算法求解矿井风量调控无约束优化数学模型存在收敛速度较慢的问题,提出了一种基于改进人工蜂群算法(ABC)的矿井风量按需调控智能决策方法。以矿井调节分支风阻为决策变量、各分支实际风量与需风量相符合为约束条件,以... 针对现有元启发式算法求解矿井风量调控无约束优化数学模型存在收敛速度较慢的问题,提出了一种基于改进人工蜂群算法(ABC)的矿井风量按需调控智能决策方法。以矿井调节分支风阻为决策变量、各分支实际风量与需风量相符合为约束条件,以目标用风分支风量与理想风量差距最小为目标,建立了矿井风量按需调控智能决策模型;运用拉格朗日松弛方法优化模型的约束条件,采用冲突数方法优化模型的目标函数,利用随机搜索方法和启发式算法优化模型的搜索策略。针对人工蜂群算法(ABC)利用能力不足的问题,提出了一种改进ABC算法,并将其用于求解矿井风量按需调控智能决策模型。该算法在采蜜蜂局部寻优时引入群体历史最优解引导采蜜行为,并利用一般反向学习策略保存侦查蜂的搜索经验,良好地平衡了算法的探索和利用能力。实验结果表明:与粒子群优化(PSO)算法、ABC算法、基于全局最优的人工蜂群(GABC)算法和基于一般反向学习的人工蜂群(GABC-GOBL)算法相比,改进ABC算法能更加快速、稳定地求解出矿井风量按需调控最优方案,且风量调控精度可达0.49 m^(3)/s。 展开更多
关键词 矿井通风 风量按需调控 风量智能决策 人工蜂群算法 风阻
在线阅读 下载PDF
多源数据融合的焊接质量监测技术
16
作者 张发平 孙昊 +1 位作者 魏剑峰 宋紫阳 《北京理工大学学报》 北大核心 2025年第5期471-481,共11页
针对焊接质量的图像信息检测方法难以发现隐性焊接缺陷的问题,提出基于多源数据融合的焊接隐性异常检测和识别方法,以期增加缺陷检测的种类和提高精度.首先,对采集的焊接过程中的声音、电压、光谱、温度等多维度信息进行特征值计算,并... 针对焊接质量的图像信息检测方法难以发现隐性焊接缺陷的问题,提出基于多源数据融合的焊接隐性异常检测和识别方法,以期增加缺陷检测的种类和提高精度.首先,对采集的焊接过程中的声音、电压、光谱、温度等多维度信息进行特征值计算,并将这些特征值与焊接的熔池图像特征值结合,构成焊接质量的原始特征空间;然后采用线性判别方法,降维形成焊接信息的低维特征空间;最后,使用孤立森林法筛选邻域搜索空间,并将该邻域搜索空间中的焊接数据点划分为多个重叠子集.采用局部离群因子法对新数据点在多个重叠子集中进行邻域搜索,对焊接过程进行异常检测,该方法充分考虑了焊接质量数据的全局特征并且计算复杂度大为降低.最后,采用基于人工蜂群算法优化的概率神经网络进行焊接质量数据的精确细分和异常的精准识别,该方法增强了全局搜索能力,同时避免陷入局部最优.试验验证结果显示所提方法都焊接异常的检测精度可达97.44%,对综合焊接异常的识别精度可达96.03%,证明了方法的有效性. 展开更多
关键词 隐性焊接异常 多源数据 局部离群因子 概率神经网络 线性判别方法 人工蜂群算法
在线阅读 下载PDF
基于ABC-LSTM模型的锂离子电池剩余使用寿命预测 被引量:2
17
作者 刘勇 于怀汶 +3 位作者 刘大鹏 穆勇 王瀛洲 张秀宇 《储能科学与技术》 北大核心 2025年第1期331-345,共15页
为了保证储能系统的安全稳定运行,准确预测锂离子电池的剩余使用寿命(remaining useful life,RUL)至关重要。本工作提出了一种基于人工蜂群算法(artificial bee colony,ABC)和结合dropout技术的长短期记忆网络(long short-term memory,L... 为了保证储能系统的安全稳定运行,准确预测锂离子电池的剩余使用寿命(remaining useful life,RUL)至关重要。本工作提出了一种基于人工蜂群算法(artificial bee colony,ABC)和结合dropout技术的长短期记忆网络(long short-term memory,LSTM)相结合的综合预测模型,可有效提高锂离子电池RUL预测的准确性。首先,利用dropout正则化方法有效减轻过拟合现象的优势,提高预测模型的泛化能力。其次,引入针对容量回升及数据噪声问题的激活层网络结构,显著提升模型对复杂非线性数据的处理能力。然后,结合ABC算法优化LSTM综合预测模型的超参数,避免模型陷入局部最优解,提高RUL预测精度。最后,通过NASA研究中心及CALCE的公开数据集验证所提模型的预测准确性和鲁棒性。本工作对基于40%和60%训练数据的不同算法预测性能进行实验分析验证,并与麻雀优化算法、座头鲸优化算法等群体优化算法进行比较。实验结果表明,所提出的ABC-LSTM综合预测模型可以更加准确地捕获锂离子电池容量退化的全局趋势及局部特征,其中60%比例的RUL预测结果的均方根误差平均保持在1.02%以内,平均绝对误差平均保持在0.86%以内,拟合系数高达97%以上。 展开更多
关键词 锂离子电池 剩余使用寿命预测 长短期记忆网络 人工蜂群算法 dropout技术
在线阅读 下载PDF
基于人工蜂群算法的循环包装箱回收中心多目标选址 被引量:1
18
作者 刘笑 朱磊 张媛 《包装工程》 北大核心 2025年第11期267-276,共10页
目的通过构建多目标优化模型,从而确定最佳的回收中心选址方案,以解决循环包装箱回收中心的选址难题。方法建立多目标优化模型,以达到最小化成本、碳排放和运输距离的目的。采用人工蜂群算法(ABC)对优化模型进行求解,并采用非支配排序... 目的通过构建多目标优化模型,从而确定最佳的回收中心选址方案,以解决循环包装箱回收中心的选址难题。方法建立多目标优化模型,以达到最小化成本、碳排放和运输距离的目的。采用人工蜂群算法(ABC)对优化模型进行求解,并采用非支配排序遗传算法II(NSGA-II)、粒子群优化算法(PSO)和蚁群算法(ACA)作为对比算法,对其在不同侧重点下的性能表现及所得的最优选址方案进行对比分析。结果ABC算法在均衡性、效率以及全局最优解的搜索能力上均优于另外3种算法,它能够更有效地平衡多目标之间的冲突,从而得出更为理想的选址方案。结论ABC算法为解决循环包装箱回收中心选址问题提供了更为合理、优越的解决方案,特别是在处理多目标优化问题时表现出色。 展开更多
关键词 循环包装 人工蜂群算法 回收中心 选址 多目标
在线阅读 下载PDF
采用全局健康因子和残差模型的锂离子电池健康状态估计 被引量:1
19
作者 胡循泉 耿莉敏 +5 位作者 舒俊豪 张文博 巫春玲 尉小龙 黄东 陈昊 《西安交通大学学报》 北大核心 2025年第4期105-117,共13页
为准确估计锂离子电池的健康状态(SOH),提出了一种卷积神经网络-残差网络-双向门控循环单元-注意力机制(CNN-Residual-BiGRU-Attention)模型和微调估计方法。首先,采用分段近似聚合算法对电池容量增量和恒流充电曲线进行降维,构建全局... 为准确估计锂离子电池的健康状态(SOH),提出了一种卷积神经网络-残差网络-双向门控循环单元-注意力机制(CNN-Residual-BiGRU-Attention)模型和微调估计方法。首先,采用分段近似聚合算法对电池容量增量和恒流充电曲线进行降维,构建全局健康因子;接着,利用卷积神经网络提取全局健康因子时序特征,通过注意力机制突出强相关特征,并引入残差网络保持信息完整性;最后,通过改进人工蜂群算法对模型超参数寻优,提升模型SOH估计精度。采用美国国家航空航天局和牛津大学锂离子电池数据集进行精度验证,结果表明:利用提出的微调估计方法,即使精度较差的卷积神经-长短期记忆模型,SOH估计结果的平均绝对误差e_( MAE)、平均绝对百分比误差e_( MAPE)和均方根误差e RMSE也均在2%以内;相较于卷积神经网络-双向门控循环单元-注意力机制模型,采用CNN-Residual-BiGRU-Attention模型对训练集比例为30%的同一电池SOH进行估计,得到的e_( MAE)、e_( MAPE)和e RMSE分别降低了41.86%、44.35%、42.11%;对训练集比例为40%的同类电池SOH进行估计,得到的e_( MAE)、e_( MAPE)和e RMSE分别降低了45.51%、45.93%、40.10%。该研究结果可为低比例训练集条件下准确估计锂离子电池的SOH提供理论参考。 展开更多
关键词 锂离子电池 健康状态估计 全局健康因子 改进人工蜂群算法 残差 双向门控循环单元
在线阅读 下载PDF
两阶段智能优化算法求解紧凑型带钢生产热轧调度问题
20
作者 梁望 钱斌 +2 位作者 胡蓉 张梓琪 张长胜 《计算机集成制造系统》 北大核心 2025年第1期102-116,共15页
针对实际生产中广泛存在的紧凑型带钢生产热轧调度问题(HRSP_CSP),提出一种两阶段智能优化算法(TIOA)进行求解。为合理控制成本并确保效益,采用主次目标进行优化。主目标为如何加入最少的无委托带钢(即订单外生产的带钢)来构成最小轧制... 针对实际生产中广泛存在的紧凑型带钢生产热轧调度问题(HRSP_CSP),提出一种两阶段智能优化算法(TIOA)进行求解。为合理控制成本并确保效益,采用主次目标进行优化。主目标为如何加入最少的无委托带钢(即订单外生产的带钢)来构成最小轧制批次;次目标为如何在主目标确定的轧制批次中,确定各批次内的带钢集合和轧制顺序,以实现轧制平均平滑率(即各批次带钢轧制平滑率的平均值)最小。基于HRSP_CSP的特点,TIOA设计为两阶段优化算法。在TIOA的前一阶段,分析问题特征,提出启发式算法获取问题的最优解(即最小轧制批次)。在TIOA的后一阶段,分析问题性质,提出改进人工蜂群(IABC)算法在较短时间内获取问题的优质解。IABC算法采用基于集合的编码方式,并设计问题解的最优解码策略来提升解的质量,同时设计结合无效邻域判断策略的两类Swap邻域操作以增强局部搜索效率。通过仿真实验和算法对比,验证了TIOA的有效性。 展开更多
关键词 启发式算法 热轧调度 人工蜂群 紧凑型带钢生产
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部